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Abstract

We show that inflation risk is priced in the cross-section of US stock returns with a
price of inflation risk that is comparable in magnitude to that of the aggregate market.
The inflation risk premium varies over time conditional on the nominal-real covariance, the
time-varying relation between inflation and the real economy. Using a consumption-based
equilibrium asset pricing model, we argue that inflation is priced because it predicts real
consumption growth. The historical changes in the predictability of consumption with
inflation, which are mediated by the nominal-real covariance, can account for the size,
variability, predictability and sign-reversals –last observed in the 2000s– in the inflation
risk premium.

JEL Classification Codes: G11, G12, G13

Keywords: Inflation, (Time-Varying) Inflation Risk Premium, Inflation Hedging, Cross-
Sectional Asset-Pricing, Nominal-Real Covariance.



Introduction

In this paper, we show that inflation risk is priced in the cross-section of stock returns and

that this price is strongly time-varying. We estimate an unconditional inflation risk premium

of -4.2% for a high-minus-low decile inflation beta portfolio, or 1.4% per unit of inflation beta,

which corresponds to a Sharpe ratio of -0.30. Thus, in magnitude, the price of inflation risk

is comparable to the price of aggregate stock market risk. An unconditional negative price

of risk means that historically, on average, high inflation corresponds to bad states of nature:

investors are willing to accept lower returns when holding securities that are good hedges against

inflation.

Recent studies show that inflation does not always signal a bad state of the economy (Bekaert

and Wang (2010), Campbell et al. (2013), and David and Veronesi (2014)). Consistent with

this observation, we find that the nominal-real covariance - which is strongly time-varying - is an

economically large and statistically significant predictor of the conditional price of inflation risk

(using both asymptotic and bootstrap inference). The nominal-real covariance is measured as

the slope coefficient of a rolling regression of real consumption growth on lagged inflation, and

therefore indicates whether inflation shocks provide good or bad macroeconomic news at a given

point in time. A one standard deviation change in the nominal-real covariance is associated

with a change in expected return of 4.5% for the high-minus-low inflation beta portfolio, or

1.5% per unit beta, which is similar in magnitude to the unconditional price of inflation risk.

In addition to the price of risk, the inflation betas of stocks - the quantity of inflation risk

- also vary distinctly with the nominal-real covariance. Unconditionally, the cross-section of

inflation exposures is wide, with persistent and statistically significant inflation betas. Among

the ten inflation beta-sorted portfolios, a one standard deviation change in the nominal-real

covariance leads to a change in inflation beta of 1.55 on average, which is about half of the

cross-sectional spread in inflation betas. This change translates to an expected return of about

2.2%. Although the effect of the nominal-real covariance on the price of risk and the quantity
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of risk are correlated, our evidence suggests that both channels are important as determinants

of inflation risk premia in expected stock returns. To be precise, variation in both the quantity

and price of risk contribute to time-variation in the level of inflation risk premia, whereas it is

mostly variation in the price of risk that drives time-variation in the cross-sectional spread of

inflation risk premia.

By studying the cross-section of stock returns, we not only uncover a new source of in-

formation about the inflation risk premium in the economy, but also provide insights about

the distribution and pricing of inflation risk of individual firms. Measures of the inflation risk

premium have had a natural starting point in the yield curve. With the development of sophis-

ticated no-arbitrage term structure models and the emergence of Treasury Protected Inflation

Securities (TIPS), estimates of the inflation risk premium in the bond market have become

more reliable and widely available.1 Another conventional way to estimate the inflation pre-

mium is to study the joint time-series behavior of inflation and aggregate market returns. A

landmark example is Modigliani and Cohn (1979), who find a negative correlation between in-

flation and the S&P500 returns over the 1970’s and propose an explanation based on inflation

illusion. Other recent economic explanations of the inflation premium in the aggregate market

are based on important contributions by Wachter (2006) using habit formation, Gabaix (2008)

using rare disasters, and Bansal and Shaliastovich (2010) using long-run risk. If the fundamen-

tal mechanisms of the real effects of inflation originate at the level of individual firms, studying

the cross-section of stocks can provide valuable additional information that is masked in the

aggregate market and the yield curve. Our findings show that the cross-section of stock returns

is a rich source of information about the inflation risk premium.

We develop an equilibrium model that rationalizes the observed inflation premium by ar-

guing that inflation today predicts real consumption growth in the future. Unconditionally, as

1Ang and Piazzesi (2003), Ang, Piazzesi and Wei (2006), Ang, Bekaert and Wei (2007, 2008), Singleton, Dai
and Yang (2007), Singleton, Le and Qiang (2010), Singleton and Le (2010), Haubrick, Pennacchi, and Ritchken
(2008), Gurkaynak, Sack, and Wright (2010), Chen, Liu, Cheng (2010), Campbell et al. (2013).
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pointed out by Piazzesi and Schneider (2005), inflation predicts consumption growth negatively.

In our model, this generates the negative unconditional price of inflation risk observed in the

data. Conditionally, the predictability of consumption growth with inflation is determined, in

sign and magnitude, by the time-varying nominal-real covariance. Our model uses this time-

varying relation between inflation and consumption to generate the dynamics of the price of

inflation risk, as well as of the quantity of risk, consistent with our empirical estimates. The

model takes the stochastic processes for consumption, inflation, and the nominal-real covariance

as given and asset prices are then determined endogenously through the representative agent’s

Euler equation. Based on estimated processes for inflation, consumption, and their predictive

regressions, and using reasonable values for preference parameters, we show that the model can

quantitatively replicate the observed conditional and unconditional inflation risk premiums.

To generate inflation premiums consistent with the data, our model has four key ingredients,

all of which are necessary. The first ingredient - as already mentioned - is that inflation predicts

future real consumption growth. In full-sample regressions of consumption growth on inflation

with constant coefficients, a one percent inflation this month is associated with a decrease of half

a percent in consumption growth over the next 12 months. However, the R2 of this regression

is only slightly over 1%. Allowing for time-varying slope coefficients that may also change sign

- the nominal-real covariance - the R2 increases to over 10%.

The second ingredient is that inflation is persistent and follows an ARMA(1,1) process.

Inflation persistence is widely documented in the literature, for example in Fuhrer and Moore

(1995), Stock and Watson (2005), Campbell and Viceira (2001) and Ang, Bekaert and Wei

(2007), and the ARMA(1,1) feature is similar to Fama and Gibbons (1984), Vassalou (2000),

and Campbell and Viceira (2001). That inflation is persistent will be important in our model to

quantitatively match the inflation premium: more persistent inflation induces a larger market

price of inflation risk because it affects consumption growth for a longer period of time.

The MA(1) part of the ARMA(1,1) structure is the third ingredient and ascertains that

innovations to inflation and consumption have a time-varying conditional covariance, which
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is the model’s theoretical counterpart of the nominal-real covariance. Consequently, inflation

predicts future consumption over longer horizons in a time-varying way.

The fourth ingredient is a representative agent with recursive Epstein-Zin-Weil (EZ) utility.

With EZ preferences, shocks to expectations about future consumption growth are priced in

addition to shocks to consumption growth itself. Since inflation predicts consumption growth,

inflation shocks are priced in our model. This property of EZ utility is explored by many

authors in the macro-finance literature.

Our empirical results are robust in a number of important dimensions. First, aside from sort-

ing stocks on their exposure to inflation, we present consistent evidence on the time-varying

price and quantity of inflation risk for a maximum-correlation inflation-mimicking portfolio

(Breeden et al., 1989) as well as the inflation risk premium estimated using a Fama-MacBeth

cross-sectional regression for individual stocks. Second, we show large and significant differ-

ences in the inflation risk premium when we split the sample in months where the nominal-real

covariance is historically low versus high. Third, our evidence does not depend on a particular

measure of the nominal-real covariance. We find quantitatively and qualitatively similar ev-

idence using either the covariance between inflation and future industrial production growth,

which effectively treats inflation as a recession state variable of the type advocated in Cochrane

(2005, Ch.9) and Koijen et al. (2013), or using the stock market beta of the long-term Treasury

bond, as in Campbell et al. (2013). Fourth, although inflation betas contain a large industry

component, our evidence on the inflation risk premium is robust when we use only within- or

across-industry variation in exposures. This evidence highlights that even within an industry

there is enough information to identify the inflation risk premium. Fifth, all of our results

carry through when we control in our predictive regressions for benchmark predictors as well

as for exposure to benchmark asset pricing factors.2 Finally, we perform a truly out-of-sample

2The benchmark predictors are the dividend yield, term spread and default spread as well as the consumption-
wealth ratio of Lettau and Ludvigson (2001a, 2001b). The benchmark factors are MKT, SMB, HML, and MOM,
combined in the CAPM (Sharpe (1964), Lintner (1965) and Mossin (1966)), the Fama-French three-factor model
(Fama and French (1993)), and the Fama-French-Carhart model (Carhart (1997)).
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exercise using real-time inflation, inspired by the approach of Ang et al. (2012).

Our contribution to the literature is in establishing that the cross-section of stock returns

contains an inflation risk premium that is varying considerably over time. Chen, Roll and Ross

(1986), Ang et al. (2012) and Duarte and Blomberger (2012) also estimate the inflation risk

premium in the cross-section of portfolios or individual stocks, but do not analyze whether

the risk premium is time-varying. We extend recent bond market evidence in arguing that

the nominal-real covariance is an important driver of time series variation in the inflation

risk premium and, in particular, of its recent reversal in sign. Campbell et al. (2013) show

that nominal bond risks also vary over time with the nominal-real covariance and document

a consistent change in sign of term premiums in U.S. government bond yields over the last

decade. Campbell et al. (2014) analyze the monetary policy drivers of these changes in bond

risk (premiums). Furthermore, Kang and Pflueger (2013) find that the nominal-real covariance

affects corporate bond yields (above and beyond government bond yields) in six developed

economies through a credit channel, whereby a firm’s real liabilities and default rates change

with inflation. Our findings show similar effects for the stock market.

The remainder of the paper is organized as follows. In Section I we describe how to measure

inflation risk in the cross-section of stocks. In Section II we estimate the inflation risk premium,

both unconditionally and conditional on the nominal-real covariance. In Section III we explain

our results in the context of an equilibrium model in which the relation between inflation and

consumption is time-varying. In Section IV we calibrate the model to the data. In Section V

we present a number of robustness checks. We conclude in Section VI.

1 Inflation Risk

In this section we describe our data sources, our approach to measuring inflation risk in the

cross-section of stocks, and analyze the time-varying relation between inflation and real con-

sumption growth.
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1.1 Data

Monthly inflation (Πt) is the percentage change in the seasonally-adjusted Consumer Price

Index for All Urban Consumers (CPI) available from the U.S. Bureau of Labor Statistics. We

measure monthly nominal consumption (Ct) growth using the seasonally-adjusted aggregate

nominal consumption expenditures on nondurables and services from the National Income and

Product Accounts (NIPA) Table 2.8.5. Population numbers come from NIPA Table 2.6 and

price deflator series from NIPA Table 2.8.4, which we use to construct the time series of per

capita real consumption growth. Seasonally-adjusted industrial production growth is from the

FREDr database of the St. Louis FED and the ten-year constant maturity treasury bond

return is from CRSP. In our asset pricing tests, we use all ordinary common stocks traded on

the NYSE, AMEX, and NASDAQ (excluding firms with negative book equity) from CRSP. The

CRSP value-weighted market portfolio, the one-month t-bill return, benchmark asset pricing

factors, and industry portfolios are from Kenneth French’s website. Table 1 presents descriptive

statistics for the sample over which we run our asset pricing tests: July 1962 to December 2014.

The start of the sample period coincides with the introduction of AMEX stocks in the CRSP

file and is common to most empirical studies of the cross-section.

1.2 Inflation Betas

At the end of each sample month t, we measure the exposure of firm i to inflation by estimating

its historical “beta” of excess returns, Ri,t, with respect to monthly innovations in inflation.

Following Fama and Gibbons (1984), Vassalou (2000) and Campbell and Viceira (2001), we

filter out these innovations, denoted uΠ,t, using an ARMA(1,1)-model. We estimate inflation

betas using a weighted least-squares (WLS) regression over an expanding window that uses

all observations from the first month the stock is included in the sample up to month t. The

WLS weights are exponentially decaying in their distance to t. The expanding window ensures

that we use as much information as possible, whereas an exponential decay in weights ensures
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that the estimated exposure gives most weight to the most recent information. We require that

stocks have at least 24 out of the last 60 months of returns available and use past information

only in the estimation. Thus, the estimator of a stock’s inflation risk, βΠ,i,t, is given by

(
α̂i,t, β̂Π,i,t

)
= arg min

αi,t,βΠ,i,t

t∑
τ=1

K(τ) (Ri,τ − αi,t − βΠ,i,tuΠ,τ )
2 (1)

with weights K(τ) =
exp(−|t− τ | h)∑t−1
τ=1 exp(−|t− τ | h)

and h =
log(2)

60
, (2)

so that the half-life of the weights K (τ) converges to 60 months for large t.

Following Elton et al. (1978) and Cosemans et al. (2012), we transform the estimated β̂Π,i,t

using a Vasicek (1973) adjustment

β̂vΠ,i,t = β̂Π,i,t +
varTS(β̂Π,i,t)[

varTS(β̂Π,i,t) + varCS(β̂Π,i,t)
] [meanCS(β̂Π,i,t)− β̂Π,i,t

]
, (3)

where the subscripts TS and CS denote means and variances taken over the time-series and

cross-sectional dimension, respectively. Each β̂vΠ,i,t is a weighted average of the stock-specific

beta estimated in the time series and the average of all betas in the cross-section of month t,

where the former receives a larger weight when it is estimated more precisely. From this point

forward, inflation betas refer to the WLS and Vasicek-adjusted betas and we drop the hat and

superscript v.

We show in Section 5.2 that our conclusions are robust to (i) estimating inflation betas

using a 60-month rolling window; (ii) controlling for benchmark traded asset pricing factors in

Equation 1; and, (iii) using alternative measures of inflation, including the difference between

inflation and the short rate (as a measure of inflation innovations) and a truly out-of-sample

exercise using inflation in the real-time vintage CPI series.
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1.3 Inflation-Sorted Portfolios

We create thirty value-weighted portfolios by performing a two-way sort of all stocks into

portfolios at the intersection of ten inflation beta deciles and three size groups. The size groups

are defined by the 20th and 50th percentiles of last month’s NYSE market capitalization (the

Micro, Small, and Big groups of Fama and French (2008)). We then collapse the thirty portfolios

into ten size-controlled inflation beta-sorted portfolios by averaging over the three size groups

in each inflation beta decile. On one hand, the smallest of stocks are illiquid, not in the set

of stocks typically held by institutions that care most about inflation (such as pension funds),

and their betas are harder to estimate. On the other hand, Ang et al. (2012) find that the best

inflation hedgers in the CRSP file are the smallest stocks. To not favor either hypothesis, in

our main tests we follow previous literature and use the full cross-section of stocks, but give

equal weight to each size group in the inflation risk premium. With a burn-in period of 60

months, this leaves us with a sample of post-ranking returns from July 1967 to December 2014.

In a robustness check, we analyze the inflation risk premium within size groups and control for

additional characteristics, such as book-to-market and momentum.

1.4 The Time-Varying Relation Between Inflation and Consumption

Inflation is risky when it either indicates good or bad news about the state of the economy.

To this end, in this section we analyze the relation between inflation and future consump-

tion growth. In Panel A of Table 2, we present the results from simple regressions of future

consumption growth from month t+ 1 to t+K, K = {1, 3, 6, 12}, on inflation over month t:

∆Ct+1:t+K = dK0 + dK1 Πt + et+1:t+K . (4)
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We see that the unconditional relation between inflation and consumption is negative, consistent

with previous evidence in, e.g., Piazzesi and Schneider (2006).3 Over our sample period from

July 1967 to December 2014, however, the coefficient on inflation is not significantly different

from zero at any horizon.

As already noted in Bekaert and Wang (2010) and Campbell et al. (2014), among others, this

unconditional regression masks important variation over time. To quantify this time-variation

and demonstrate its economic magnitude, we perform the following two-stage test:

∆Ct+1:t+K = dc,K0 + dc,K1 (âKt−1 + b̂Kt−1Πt) + et+1:t+K , where (5)

∆Cs+1:s+K = aKt−1 + bKt−1Πs + es+1:s+K , s = 1, ..., t−K. (6)

In the first stage, Equation (6) regresses consumption growth on lagged inflation over a backward-

looking window using all data available up to month t (estimated using weighted least squares

with weights identical to Equation (2)). Hence, the window s runs from 1 to t − K. In the

second stage, Equation (5) uses the estimated coefficients and inflation observed at time t, i.e.,

âKt−1 + b̂Kt−1Πt, to predict consumption growth from month t + 1 to t + K. This setup ensures

that we use no forward-looking information when we predict consumption growth in the second

stage.

If this structure correctly models the conditional expectation of consumption growth, we

should find that dc,K0 = 0 and dc,K1 = 1. Panel B of Table 2 presents the results. To test

significance, we report asymptotic Newey-West t-statistics (with K lags) as well as t-statistics

from a bootstrap experiment that addresses the concern that our estimates are biased due

to errors-in-variables (EIV). The bootstrapped standard errors are derived from 500 block-

bootstrap replications of the coefficient estimates as explained in Section A of the Internet

Appendix.

First, dc,K1 is significantly larger than zero at all horizons, based on both asymptotic and

3In the data, we lag inflation by an additional month, to account for the reporting delay of CPI numbers.
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bootstrap inference. In fact, for no horizon K can we reject the hypothesis that dc,K0 = 0

nor that dc,K1 = 1, which suggests that this structure succeeds in modelling the conditional

expectation of consumption growth. This conclusion is supported by the R2, which increases

from 3% at the one month horizon to an economically large 15% at the one year horizon.

We also calculate an out-of-sample R2 (R2− OOS) to ensure that the predictive performance

does not come from the constant term aKt−1 alone, which measures lagged average consumption

growth, but also from the nominal-real covariance, bKt−1. The R2−OOS is estimated as is usual

in predictive regressions in the literature (see, e.g., Goyal and Welch (2008)):

R2−OOS = 1−
V ar(∆Ct+1:t+K − (aKt−1 + bKt−1Πt))

V ar(∆Ct+1:t+K − a∗,Kt−1)
. (7)

Here, a∗,Kt−1 is estimated in a backward-looking window regression of consumption growth on a

constant following Equation 6, but leaving out lagged inflation. We find that the R2−OOS is

similarly increasing from 2% at the one month horizon to 10% at the one year horizon. These

results imply that inflation is a potent predictor of consumption growth once accounting for a

time-varying nominal-real covariance.

Going forward, our main proxy for the nominal-real covariance is the time-varying relation

between inflation and future twelve-month consumption growth (NRCC
t ). In a number of

robustness checks, we consider two alternative proxies of the nominal-real covariance, namely

the time-varying relation between inflation and industrial production growth (NRCIP
t ) and

the negative of the stock market beta of a long-term treasury bond (NRC−BBt ). NRCIP
t

is estimated by substituting industrial production for consumption on the left-hand side of

Equation (11). Following Campbell et al. (2014), NRC−BBt is estimated with a 60-month

rolling window regression of the 10-year constant maturity treasury bond return on the CRSP

value weighted stock market return. Figure 1 plots these three estimates of the nominal-real

covariance and shows strong comovement at low frequencies: the Hodrick-Prescott filtered

trends of these series share a correlation larger than 0.70. Consistent with Campbell et al.
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(2014), NRC−BBt has changed sign from negative to positive in the early 2000s. In fact, all

three measures have increased markedly since the turn of the century, as noted also in Bekaert

and Wang (2010), Campbell et al. (2013), and David and Veronesi (2014).

2 The Inflation Risk Premium

Our main objective is to analyze the inflation risk premium in the stock market. We use three

standard approaches to measure the inflation risk premium. The first estimate of the inflation

risk premium is the High-minus-Low inflation beta decile spreading portfolio (denoted HLIP).

The second estimate of the inflation risk premium is the maximum correlation inflation-

mimicking portfolio (denoted MCIP) of Breeden et al. (1989). We estimate this portfolio by

projecting inflation innovations on the space of ten inflation beta-sorted portfolio returns:

uΠ,t+1 = intercept+ weights′ ×Rt+1 + et+1, (8)

where Rt+1 = (RHigh,t+1, ..., RLow,t+1)′. Then, MCIP is the portfolio return weights′ × Rt+1.

We use the ten inflation beta-sorted portfolios as they should contain a large share of the

information in uΠ,t+1 that is relevant for the cross-section of stock returns. Table IA.1 of the

Internet Appendix presents the weights. We see that the Wald-test of the hypothesis that the

weights are jointly equal to zero rejects at the 0.1%-level and the R2 is equal to 5.35%. These

results suggests that these portfolios likely contain a large chunk of all inflation information

relevant for the cross-section of stock returns (see, e.g., Vassalou (2003) and Petkova (2006))

for similar arguments concerning non-traded factors and their mimicking portfolio).

Finally, we run a cross-sectional regression of monthly individual stock returns on lagged

inflation betas, where we control for market cap, book-to-market, and momentum following
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previous literature (see, e.g., Fama and French (2008) and Chordia et al. (2015)):

Ri,t+1 = l0,t + lΠ,tβΠ,i,t + lZ,tZn,t + ut+1, with Zt = {MVt, BMt,MOMt}. (9)

The time-series of coefficient estimates lΠ,t represent the third estimate of the inflation risk

premium in the cross section of stocks, denoted CSIP. As shown in Fama (1976), CSIP captures

the return of a zero-investment portfolio with pre-ranking inflation beta exactly equal to one.

2.1 The Inflation Risk Premium in Subsamples

Table 3 describes the set of ten inflation beta-sorted portfolios, as well as the three estimates of

the inflation risk premium: HLIP, MCIP and CSIP. Panel A first reports the ex-post inflation

exposures of these portfolios. The exposures are estimated with a simple regression of portfolio

returns on inflation innovations over the full sample. Analyzing whether these exposures are

large, economically and statistically, is important to test whether inflation is a useless factor

in the sense of Kan and Zhang (1999) and also as a reality check of the estimation procedure.

The ex post exposures line up almost monotonically from High to Low and the dispersion

is wide, giving a post-ranking beta of 3.0 for HLIP. This ex post exposure is significant and

economically large, translating to an incremental monthly return of 76 basis points on average

when uΠ,t increases by one standard deviation. For comparison, the CRSP value-weighted

market portfolio, with an inflation beta of -1.96, loses 49 basis points for the same increase

in uΠ,t. MCIP and CSIP are scaled so that they have identical ex post inflation exposure to

HLIP.4

The remaining rows in Panel A report consistent evidence when we estimate inflation ex-

posures over an expanding window - by applying Equation (1) to the post-ranking returns of

the portfolios - and calculate the average and standard deviation of these post-ranking rolling

4For both MCIP and CSIP, the scaling factor is 3.00 divided by the post-ranking inflation beta of the
respective portfolio.
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inflation betas. It is important to note from the standard deviations that these rolling inflation

betas are subject to substantial time-variation, which we will address in more detail below.

Panel B and C present our estimates of the inflation risk premium over, respectively, the full

sample and in two subsamples pre- versus post-2002. This split is motivated by the fact that the

nominal-real covariance (as proxied by the relation between inflation and future twelve-month

consumption growth) increased above its historical mean during 2002, without falling below its

mean again until the end of the sample. Here, we consider average return, Sharpe ratio, and

CAPM alpha. In the following, we will control also for a larger set of traded benchmark asset

pricing factors.

The average returns for the ten decile portfolios are decreasing in inflation beta over the

full sample from 9.49% for Low to 5.26% for High. This dispersion translates to a marginally

significant annualized average excess return for HLIP equal to -4.23% (t = −2.08) or -4.21%

(t = −1.83) in CAPM alpha. The evidence is similar in magnitude and significance for MCIP

and CSIP. These estimates translate to a price of inflation risk as measured by Sharpe ratio

equal to -0.30, -0.44 and -0.32, respectively, which is comparable in magnitude to the Sharpe

ratio of the market portfolio. A negative unconditional inflation risk premium is consistent with

an unconditionally negative relation between inflation and future consumption growth over our

sample (Piazzesi and Schneider (2006)). Indeed, if a shock to inflation is bad news for investors

on average, they should pay high prices (and accept low returns) for high inflation beta stocks

(net of their market beta). Previous estimates of the unconditional inflation risk premium in

the literature are also negative and roughly in the same order of magnitude using a small set

of stock portfolios (Chen et al. (1986) and Ferson and Harvey (1991)), nominal and real bonds

(e.g., Buraschi and Jiltsov (2005), Gurkaynak et al. (2010), Ang et al. (2008), and D’Amico et

al. (2008)), and individual stocks Ang et al. (2012).

Looking at the subsamples, we see that this negative inflation risk premium is completely

driven by the sample period pre-2002, where average returns are almost monotonically decreas-

ing from 9.33% for Low to 1.84% for High. The difference between these average returns is
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economically and statistically large at -7.49% (t = −3.01) for HLIP, which is significant even

using the data-mining corrected t-statistic cutoff of three proposed in Harvey et al. (2015). In

all three cases (HLIP, MCIP, and CSIP), returns in this subsample translate to a price of risk

below -0.50 in Sharpe ratio, which is economically large. Comparing the subsample post-2002

with these estimates, we see that the post-minus-pre-2002 difference is decreasing monotoni-

cally in inflation beta, translating to a large increase in the inflation risk premium as measured

by HLIP of 12.92% (t = 2.58). We see economically large and marginally significant increases

also for MCIP and CSIP as well as in CAPM alphas. In fact, because of this large increase in

the inflation risk premium, we cannot reject the null that the inflation risk premium is zero in

the subsample post-2002. Table IA.2 of the Internet Appendix shows qualitatively and quan-

titatively similar effects when we split the sample in months where NRCC
t is above and below

its mean.

In all, this subsample evidence suggests that there is important time variation in the inflation

risk premium that may be linked to the time-variation, and, in particular, the recent reversal,

in the covariance between inflation and the real economy (Bekaert and Wang (2010), Campbell

et al. (2013), and David and Veronesi (2014)). Campbell et al. (2013) find that inflation risk

premiums in bonds as well as the correlations between stocks and bonds vary over time, and

argue that this variation is driven by the nominal-real covariance. As such, the inflation risk

premium in the stock market should also depend on whether inflation signals bad or good news

for the economy. To address this time-variation, we now estimate the inflation risk premium

conditional on the nominal-real covariance.

2.2 Time-Variation in the Inflation Risk Premium

We report in Table 4 coefficient estimates from regressions of the inflation risk premium on

the nominal-real covariance between inflation and future twelve-month consumption growth,

denoted NRCC
t . To be precise, we regress excess returns on inflation portfolios (compounded
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over horizons H of one, three, and twelve months) on NRCC
t using:

Rp,t+1:t+H = L0 + LNRCNRC
C
t + εt:t+H . (10)

To ensure that we are not using any forward-looking information in these predictive regressions,

NRCC
t is the slope coefficient b12

t−1 in the regression of Equation (6):

∆Cs+1:s+12 = a12
t−1 + b12

t−1Πs + es+1:s+12, s = 1, ..., t− 12, (11)

For each horizon, Panel A presents the estimated coefficients (annualized), asymptotic

Newey-West t-statistics (with H lags), bootstrapped t-statistics using standard errors that

are derived from 500 block-bootstrapped coefficient estimates (see Appendix A of the Internet

Appendix), and the adjusted R2’s for the individual decile portfolios and the three inflation

portfolios of interest (p = {HLIP,MCIP,CSIP}). NRCC
t is standardized to have mean equal

to zero and standard deviation equal to one. Thus, L0 measures the average excess return of the

respective portfolio for H = 1. Consistent with the evidence above, we see that the estimated

intercepts, L0, of about -4% for HLIP, MCIP, and CSIP, are marginally significant also using

bootstrap inference.

The main coefficient of interest, LNRC , measures the increase in annualized portfolio return

for a one standard deviation increase in the nominal-real covariance. We see that LNRC is

decreasing monotonically from High to Low inflation beta. As a result, the effect of NRCC
t on

the inflation risk premium is positive and large, economically and statistically (based on both

asymptotic and bootstrap inference). For a one standard deviation decrease in the nominal-real

covariance, the inflation risk premium as estimated using HLIP, MCIP, and CSIP decreases by

about 3% to 4% for H = 1, which represents roughly a doubling of the portfolio’s expected

return and thus the price of inflation risk. The effect is slightly larger for longer horizons,

growing to about 4% to 5% for H = 12. The R2 demonstrates an even stronger horizon effect,
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increasing from around 0.5% for H = 1 to over 6.5% for H = 12. We conclude that the inflation

risk premium varies conditional on the nominal-real covariance.

In Panel B, we analyze whether our results extend for two alternative measures of the

nominal-real covariance, namely the time-varying relation between inflation and industrial pro-

duction growth (NRCIP
t ) and the negative of the stock market beta of a long-term treasury

bond (NRC−BBt ). In short, our evidence is qualitatively and quantitatively robust. We find

that each alternative measure predicts the inflation risk premium (as measured by HLIP, MCIP,

and CSIP) with a positive coefficient that is comparable in magnitude, significance, and hori-

zon pattern to what we have seen before. Panel C shows that the predictive relation between

the inflation risk premium and the nominal-real covariance is robust over time and exists in

both sample halves. Although the effect is stronger in the second half of the sample, it follows

from this finding that the time-variation in the inflation risk premium is not only a recent

phenomenon (see Figure 1).

We conclude that the inflation risk premium is strongly time-varying with the nominal-

real covariance. This time-variation is driven mostly by time-variation in the price of inflation

risk. To see why, consider the cross-sectional regression portfolio, CSIP, which has ex ante

inflation beta fixed at one and for which results are comparable to the two alternatives, HLIP

and MCIP. Hence, any variation in the returns of CSIP must follow from the price of inflation

risk. The economic intuition for our result is that high inflation beta stocks are attractive to

hedge consumption risk when inflation predicts consumption with a (large) negative sign as it

did historically. However, these same stocks are not attractive as a hedge anymore, and may

even expose investors to additional consumption risk once the nominal-real covariance between

inflation and consumption starts increasing, as it does towards the end of our sample. As a

result, expected returns should be increasing in the nominal-real covariance, which is what we

find. In the following section, we formalize this intuition in a model.
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2.3 Time-Variation in Inflation Betas

Given the impact of the nominal-real covariance on the inflation risk premium (the price of

risk), a natural question is to ask whether the nominal-real covariance impacts inflation betas

(the quantity of risk). To set the stage, Figure 2 depicts the histogram of inflation betas for four

different time periods. We have selected December of 1971, 1983, 1994, and 2009 to portray

the shape of the distribution of betas in different macroeconomic conditions and inflationary

regimes. Inflation betas have significant dispersion in all four time periods, suggesting that

there is a wide spectrum of ex ante inflation betas among individual stocks.

Although some of this dispersion is certainly due to noise, we note that these ex ante inflation

betas translate to a large and persistent spread in ex post inflation beta. To see why, Figure 3

plots the monthly post-ranking inflation beta one month, one year, two years, five years, and ten

years after the sorting date. To calculate these inflation betas, we fix the portfolio composition

at the sorting date t and calculate monthly value-weighted returns up to ten years after the

sorting date. When a stock leaves the sample, we reallocate its market value across all remaining

stocks. We then run a regression of monthly returns in t+1, t+12, t+24, t+60, and t+120 on

contemporaneous (with the returns) innovations in inflation. In this way, we mimic the monthly

inflation exposure for an investor that rebalances infrequently with respect to inflation beta.

In short, our sort is powerful: post-ranking inflation beta is almost monotonically decreasing

in pre-ranking beta up to ten years after the sort, translating to a post-ranking beta for the

high-minus-low spreading portfolio that falls from 3.00 one month-after sorting (as reported in

Table 3) to a still large and significant 1.68 ten years after sorting.5

It is important to note that such wide cross-sectional dispersion in ex ante and ex post

inflation betas is instrumental in identifying the inflation risk premium analyzed in the previous

subsection. Figure 2 further shows that the mean of the inflation beta distribution moves

5This finding is seemingly inconsistent with the conclusion in Ang et al. (2012) that inflation betas are hard
to estimate out-of-sample. However, their conclusion is based on a smaller sample of S&P500 stocks from 1990
to 2009. In the Appendix to their paper, the authors report results that are consistent with ours for a sort using
all stocks in the CRSP universe from 1967 to 2009.
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considerably through time. This finding is consistent with the intuition that a time-varying

nominal-real covariance should affect the inflation beta of the aggregate stock market. Indeed,

when the nominal-real covariance is negative (positive), a shock to inflation is bad (good) news

and should be accompanied by low (high) aggregate stock returns. To formalize this intuition,

Table 5 analyzes how inflation betas of our inflation portfolios vary over time and in the cross-

section with the nominal-real covariance. To this end, we regress the rolling inflation beta of

the ten decile portfolios (estimated by applying Equation (1) to the post-ranking returns of the

portfolios) on the nominal-real covariance:

β̂Π,p,t = βp,0 + βp,NRCNRC
C
t + εp,t. (12)

As before, NRCC
t is standardized to mean equal to zero and standard deviation equal to

one, such that βp,0 is equal to the average rolling inflation beta of the respective portfolio (as

reported in Table 3). Analogous to Table 4, the table reports the estimated coefficients, with

corresponding t-statistics based on Newey-West standard errors with 60 lags, and the R2 from

each regression.

In short, we confirm that inflation betas are increasing in the nominal-real covariance. For

all decile portfolios, the effect is marginally significant and economically large, with an increase

in inflation beta of 1.55 on average for a one standard deviation increase in NRCC
t . Although

the effect is not completely monotonic, we find that βp,NRC is larger for stocks with relatively

low inflation betas. An increase of 1.55 is about half of the post-ranking inflation beta of HLIP

reported in Table 3. Given the unconditional price of inflation risk of -4.2% for HLIP, this

increase thus represents a decrease in the average inflation risk premium in the stock market

by about -2.2%, which is economically large. The model we present next, will allow for such

time-variation in inflation beta and inflation risk premiums.
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3 Model

We present a model that takes as given the key empirical interconnections among inflation,

consumption, and the nominal-real covariance uncovered in the last section and then reproduces

- via pricing through the Euler equation of a representative agent - an equilibrium inflation

risk premium that behaves like the one we empirically estimate. The model builds on the

mathematics and economic intuition of the long-run risk model of Bansal and Yaron (2004),

but the economic sources of risk are different, since our focus is on the asset pricing implications

of inflation risk.

3.1 Preferences

The representative agent has preferences given by the recursive utility function of Epstein and

Zin (1989) and Kreps and Porteus (1978),

Ut (Wt) =

(
(1− δ)C1−1/ψ

t + δEt
[
Ut+1(Wt+1)1−γ] 1−1/ψ

1−γ

) 1
1−1/ψ

, (13)

where Wt is real aggregate wealth and Ct is real aggregate consumption. The constant δ ∈ (0, 1)

is the discount rate, γ > 0 is the coefficient of relative risk aversion and ψ > 0 is the elasticity

of intertemporal substitution (EIS). It is convenient to define the constant θ = 1−γ
1−1/ψ

, which

measures the magnitude of risk aversion relative to the EIS. The first order condition for the

representative agent’s problem implies that the gross return6 Ri,t+1 on any tradable asset i

satisfies the Euler equation

1 = Et [Mt+1Ri,t+1] , (14)

6Note that in the empirical analysis Ri,t+1 refers to excess returns.
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with a stochastic discount factor given by

logMt+1 = mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1) rc,t+1, (15)

where lowercase letters denote logarithms, so that ∆ct = lnCt − lnCt−1 and rc,t = log (Rc,t).

3.2 Dynamics of the economy

The processes for real consumption growth, ∆ct, inflation, πt, the nominal-real covariance, ϕt,

and real dividend growth for asset i, ∆di,t, are exogenous and given by

πt+1 = µπ + ρπ (πt − µπ) + φπut+1 + ξπut, (16)

∆ct+1 = µc + ρc (πt − µπ) + σcηt+1 + ϕtut+1 + ξcϕt−1ut, (17)

ϕt+1 = ϕ0 − v (ϕt − ϕ0) + σwwt+1, (18)

∆di,t+1 = µi + ρi (πt − µπ) + σiηt+1 + φiϕtut+1 + ξiϕt−1ut. (19)

The shocks ut, ηt and wt are i.i.d. standard normal. Equation (16) shows that, as in our empir-

ical analysis, inflation follows an ARMA (1, 1) process. The constant µπ is the unconditional

mean of πt, ρπ is its AR (1) coefficient and φπ, ξπ control its MA (1) component. Estimating

this univariate process to extract the path for ut, as we did in the previous section and as we

do in our calibration section below, gives positive values for ρπ and φπ, and a negative one for

ξπ.

The process for ∆ct+1 in Equation (17) has several features. The term µc is the uncon-

ditional mean of ∆ct+1. The innovation ηt+1 represents a shock to the real economy that is

orthogonal to inflation and nominal-real covariance shocks, with homoskedastic impact on con-

sumption growth controlled by σc. The rest of the terms in Equation (17) capture the effect

that inflation and inflation shocks have on the real economy. These inflation non-neutralities
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have two components, an unpredictable and a predictable one. The unpredictable component

is given by ϕtut+1, where the nominal-real covariance ϕt follows the mean-reverting process

given by Equation (18). As is the case in many similar models, a stochastic ϕt implies that

consumption growth has stochastic volatility. However, unlike standard stochastic volatility

models, ϕt can change signs, so the conditional covariance between inflation and consumption

growth,

covt (∆ct+1, πt+1) = φπϕt,

can also change signs (the conditional variance of ∆ct+1 is guaranteed to always remain pos-

itive though). The predictable component of inflation non-neutralities in Equation (17) is

ρc (πt − µπ) + ξcϕt−1ut. All predictability of ∆ct+1 comes from this component. Unconditional

predictability - which empirically is found to be negative - can be seen from running, in the

model, a regression of ∆ct+k on πt analogous to the empirical one we run in Panel A of Table

2. The coefficient on πt in this regression is

Cov (∆ct+k, πt)

V ar (πt)
= qkρc +

(1− ρ2
π) ξcφπϕ0

φ2
π + ξ2

π

(20)

where qk is a constant that depends on the parameters of the inflation process (ρπ, φπ, ξπ) and

is decreasing in the predictive horizon k.

The process for consumption also implies conditional predictability of consumption growth

with inflation that is different from the unconditional predictability just examined. The con-

ditional predictability captures three key features of the relation between inflation and con-

sumption discussed in the previous section. First, higher inflation can predict higher or lower

future consumption growth depending on the time period examined. Second, the sign and

magnitude of this conditional predictability are persistent over time. Third, at each period in

time, predicting future consumption growth over horizons ranging from one to twelve months

gives almost identical results. To see that these three features are indeed present in our setup,
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we run in the model a two-step predictive procedure analogous to the one in Panel B of Table

2. In the first step, we run a conditional regression of cumulative consumption growth over the

next k = 1, 2, ..., 12 months on inflation at time t. The model-implied coefficient on inflation in

such a regression is

θ
(k)
t =

Covt−1

(∑k
j=1 ∆ct+j, πt

)
V art−1 (πt)

= hk +
ξc
φπ
ϕt, (21)

where hk is a constant that depends on the prediction horizon k. Equation (21) shows that

θ
(k)
t can change signs and is persistent because ϕt has these exact properties. In addition, for

reasonable parameters (such as the ones we use in the next section, e.g., ρc < 0), hk decreases

with k, producing coefficients θ
(k)
t that are roughly constant in k for the k’s we consider. This

first-step regression makes clear why we call ϕt the nominal-real covariance: Under the null

of the model, ϕt is a linear transformation of θ
(k)
t , the same object we use to measure the

nominal-real covariance in the data.

In the second step of the predictive procedure, we run an unconditional regression of cumu-

lative consumption growth on its value predicted from the first step regression. In the model,

the coefficient of this second-step regression is equal to one and the intercept is equal to zero.

This result is consistent with the failure to reject the hypothesis that dc1 is not equal to one and

dc0 is not equal to zero in Table 2.

The dynamics of real dividend growth for asset i is given by Equation (19). We model

dividends as levered consumption, whereby dividends are subject to the same risks as con-

sumption but with potentially different exposures. In the present context, asset i represents

one of the inflation-sorted portfolios from the last section. To derive the model-implied infla-

tion risk premium from the cross-section of stock returns, it is enough to consider two assets,

i = H, L. When we calibrate the model, these two assets will be mapped to the highest and

lowest inflation beta portfolios that we constructed in the last section.
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3.3 Wealth-consumption ratio

In equilibrium, the log wealth-consumption ratio is linear-quadratic in the state variables πt,

ϕt and ut:

wct = A0 + A1πt + A2ϕt−1ut + A3ut + A4 (ϕt − ϕ̃0)2 , (22)

where ϕ̃0 is a constant close to ϕ0 given in the Appendix.7 The loadings on the state variables

are

A1 =

(
1− 1

ψ

)
ρc

1− κ1ρπ
, (23)

A2 =

(
1− 1

ψ

)
ξc, (24)

A3 =

(
1− 1

ψ

)
κ1ξπρc

1− κ1ρπ
, (25)

A4 =
1

2θ

((
θ − θ

ψ

)
+ θA2κ1

)2

1− κ1v2 (σw + 1)
, (26)

with κ1 ∈ (0, 1) a linearization constant.

The intuition behind A1, A2 and A3 is identical to that of the standard long-run risk

model. When the EIS is greater than one, the intertemporal substitution effect dominates the

wealth effect. In this case, which we henceforth assume, higher expected consumption growth

Et [∆ct+1] leads the representative agent to invest more, increasing the wealth-consumption

ratio. It follows that any state variable that increases (decreases) expected consumption growth

has a positive (negative) loading in Equation (22). If ρc < 0, which is the relevant empirical

case, higher πt is bad news for expected consumption growth and hence A1 < 0. The higher the

persistence of inflation, ρπ , and the higher the EIS, the stronger is the impact of πt on wct (A1

is more negative). Similarly, ξcϕt−1ut is also part of expected consumption growth, which gives

7It is not necessary to introduce this constant, but it substantially simplifies the framework. Indeed, having
ϕt and ϕ2

t as two separate state variables instead of the single (ϕt − ϕ̃0)
2

gives the same results by completing
the square without the need for ϕ̃0.
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rise to the expression in A2. As ut is i.i.d., there is no multiplier akin to the (1− κ1ρπ)−1 for A1.

Even though A2 is constant, because of the time-varying nominal-real covariance, a positive

inflation shock ut is sometimes good news and sometimes bad news for expected consumption

and valuation ratios, which is captured by the cross-term ϕt−1ut in Equation (22). In our

calibration, we find evidence that ξc > 0, which implies A2 > 0. A positive inflation shock is

then a good state of nature when the nominal-real covariance is positive and a bad state of

nature otherwise.

The loading A3 appears in Equation (22) because the shock ut influences expected con-

sumption growth indirectly through inflation: ut affects πt+1 which, in turn, affects tomorrow’s

expected consumption growth Et+1 [∆ct+2]. Because inflation is persistent, not only is tomor-

row’s expected consumption growth changed through this channel, but also the whole of its

future path. The impact of ut on inflation today is regulated by ξπ while the impact of πt+1 on

wct+1 arising from all changes in future expected consumption is A1, as in our earlier dicussion.

The product of these two values, discounted by κ1 to bring the effect on wct+1 back to time t,

produces A3.

The loading A4 can be understood by recognizing that one of the roles of the nominal-real

covariance is that of stochastic volatility of consumption. The particular expression for A4 is

close to the familiar one in the long-run risk literature, yet not identical. The differences arise

because we model the volatility ϕt as an AR (1) instead of the variance ϕ2
t and because we

have stochastic volatility in the moving average component in the consumption process (17)

instead of in Bansal and Yaron’s long-run risk process - which is absent in our model. On the

other hand, the moving average component matters for A4 for the same reason that stochastic

volatility of long-run risk matters for consumption: higher stochastic volatility for ∆ct+1 today

also means a more volatile expected consumption growth at t + 1 from the point of view of

time t. Thus, despite the differences with the benchmark long-run risk model, the sign of the

stochastic volatility loading A4 is still determined by the sign of θ, so that if the EIS ψ and the

CRRA coefficient γ are both greater than one, higher uncertainty is detrimental for asset prices
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and leads to a lower wealth-consumption ratio. The fact that the nominal-real covariance can

change signs is unimportant for this channel.

3.4 Stochastic Discount Factor and Prices of Risk

Armed with the wealth-consumption ratio equation and its loadings, we can now examine the

prices of risk in the economy. The innovation in the stochastic discount factor is given by

mt+1 − Et [mt+1] = −λu,tut+1 − λw,twt+1 − λ2ww
2
t+1 − ληηt+1 (27)

where the the prices of risk are

λu,t = κ1 (1− θ) (A3 + φπA1) + [(1− θ)κ1A2 + γ]ϕt (28)

λw,t = −2κ1σw (1− θ)A4v (ϕt − ϕ0) (29)

λ2w = κ1σ
2
w (1− θ)A4 (30)

λη = σcγ (31)

The price of inflation risk, λu,t, is a linear function of the nominal-real covariance ϕt, and so can

change signs over time. In equilibrium, investors sometimes require compensation for bearing

inflation risk because inflation shocks are a harbinger of poor future consumption growth.

Other times, investors are willing to accept lower returns in order to hold inflation risk because

it is a good hedge against bad macroeconomic outcomes. In addition to ϕt, the magnitude

and standard deviation of λu,t are determined by preference parameters and the relationship

between consumption growth, inflation and inflation shocks. The sign and magnitude of the

unconditional mean of λu,t depend on how strongly and in what direction inflation predicts

expected consumption growth in an unconditional way. A negative mean for λu,t reflects that,

unconditionally, higher inflation is bad news for consumption growth and hence a bad state
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of the economy. The higher the persistence and volatility of inflation, or the stronger the

negative predictability of consumption with inflation, the larger this effect. The same is true if

risk aversion or the EIS increase, as the representative agent becomes less tolerant of expected

consumption growth risk.

The time-varying part of λu,t arises for two different reasons. First, because consumption

growth has a direct exposure to contemporaneous inflation shocks, inflation shocks are priced.

The last term in Equation (28), γϕt , captures the compensation for this type of risk. This term

would be present even in the case of power utility, when the consumption-CAPM holds, as it

represents short-term consumption volatility risk. In the case of power utility, however, none

of the other terms of λu,t would be present and the standard deviation of λu,t would be much

smaller than the one we estimate empirically unless risk aversion is set to be unreasonably high

— another manifestation of the equity premium puzzle. The second reason for the presence of

a time-varying term in λu,t is that today’s inflation shocks have a direct effect on tomorrow’s

expected consumption growth, a result of having the moving-average component of inflation

be also present in the process for consumption growth. The size of the time-varying term, and

hence of the volatility of λu,t, is determined by the volatility of ϕt, the risk aversion and EIS

of the representative agent and the degree to which lagged inflation shocks move consumption

growth.

The price of nominal-real covariance risk is given by λw,t and λ2w. The λ2w component

reflects compensation for pure stochastic volatility risk in consumption growth. This price of

risk is analogous to the standard price of stochastic volatility risk in the baseline long-run risk

model. It is the risk that the volatility of consumption will change in a persistent way, either

upwards or downwards. It is constant because the volatility-of-volatility σw is constant and

because it does not capture the risks from sign changes in the nominal-real covariance, which

are instead priced by λw,t. For example, the compensation for bearing the risk that, sometime

in the future, a positive inflation shock will change from being a good shock for the economy to

a bad one is included in λw,t. Compared to λu,t, which prices inflation risk for a given value of
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ϕt, λw,t prices the risk of ϕt changing over time. Lastly, λη is the price of short-run consumption

risk brought about by standard consumption CAPM logic.

3.5 Inflation-sorted Portfolios

Because dividends are exposed to the same risks as consumption, the equilibrium log price-

dividend ratio for portfolio i has the same form as the log wealth-consumption ratio:

pdi,t = D0i +D1iπt +D2iϕt−1ut +D3iut +D4i (ϕt − ϕ̃0i)
2 , (32)

where, as before, ϕ̃0i is a constant close to ϕ0. The loadings relevant to the analysis of the

inflation risk premium in the cross-section of stocks are

D1i =

(
ρi
ρc
− 1

ψ

)
ρc

1− ρπκ1,i

, (33)

D2i =

(
ξi
ξc
− 1

ψ

)
ξc, (34)

D3i =

(
ρi
ρc
− 1

ψ

)
κ1,iξπρc

1− ρπκ1,i

, (35)

and we give D4i, the loading on the nominal-real covariance, in the Appendix. The intuition

behind these loadings is similar to that of the wealth-consumption loadings. The only difference

is that they depend on how inflation and inflation shocks affect dividend growth not in abso-

lute terms but relative to how they affect consumption growth, since the representative agent

evaluates stocks not by their outright exposures but by their ability to hedge consumption risk.

For example, in Equation (33), it is not the absolute exposure ρi of expected dividend growth

to inflation that matters, but its magnitude relative to the exposure of consumption, ρc.

Furthermore, portfolio i is exposed to unexpected dividend growth risk, which does not

influence the price-dividend ratio (as unexpected dividends have a one-to-one effect on the

price) but does contribute to the overall risk of the portfolio. This risk — together with the
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expected dividend growth risk — is nevertheless manifested in returns space. The equilibrium

risk premium for portfolio i implied by its Euler equation is

− Covt (mt+1, ri,t+1) = λu,tβui + λw,tβwi + λ2wβ2wi + ληβηi, (36)

where the βi are portfolio-specific quantities of risk given by the correlation between a portfolio’s

return and the corresponding sources of risk. For our analysis, the most important is

βu,it =

(
ρi − ρc

ψ

)
(φπ + ξπκ1,i)κ1,i

1− ρπκ1,i

+

(
φi +

(
ξi −

ξc
ψ

)
κ1,i

)
ϕt. (37)

The term φiϕt is the quantity of unexpected dividend growth risk that, as explained, adds to

the riskiness of portfolio i but does not move its price-dividend ratio. It arises because dividend

growth is directly exposed to inflation shocks through φiϕtut+1. The nominal-real covariance

determines whether ut+1 shocks are good or bad states of nature, and hence also whether the

quantity of risk φiϕt is positive or negative. The other terms in βu,it are all related to the

quantity of expected dividend growth risk. The first term in Equation (37) is the part that

arises from inflation entering expected dividend growth through the term ρiπt in Equation (19).

This risk operates through inflation shocks moving inflation and inflation subsequently altering

expected dividend growth, so it is unrelated to the nominal-real covariance. On the other hand,

the term(ξi − ξc/ψ)κ1,iϕt gives the amount of u-risk generated by expected dividend growth’s

direct exposure to the moving-average component in inflation shocks through the term ξiϕt−1ut

in Equation (19). A positive surprise in ut can lead to increases or decreases in the quantity of

portfolio i’s risk depending on the sign of ϕt−1.
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4 Calibration

We calibrate the model in two steps. First, we estimate parameters for inflation and consump-

tion in Equations (16) and (17) using only inflation and consumption data. The estimation

by construction matches the persistence of inflation and the unconditional and conditional

properties of the predictability of consumption with inflation. The exact procedure is in the

Appendix.

In the second step, taking the parameters from the first step as given, we calibrate param-

eters for preferences, the nominal-real covariance in Equation (18) and the dividend growth

processes for inflation portfolios in Equation (19). We calibrate dividends for two portfolios

i = H, L that map to the highest and lowest inflation beta portfolios constructed in the last

section. The first target in this second step of calibration is the volatility of consumption

growth, which depends on consumption parameters already determined in the first calibration

step, but also on all parameters of the nominal-real covariance. The low observed volatility of

consumption growth places tight restrictions on the volatility of the nominal-real covariance.

The second set of targets for our calibration are the first and second moments of returns and

inflation betas for the portfolios. Matching the returns of portfolios H and L ensures that the

size of the inflation risk premium is consistent with the data. Matching the first moment of

betas then gives the appropriate mean quantity of inflation risk. Together, betas and returns

that match their empirical counterparts automatically give a model-implied price of risk that

is consistent with the data. To capture the correlation between the H and L portfolios, we also

target the standard deviation of returns and inflation beta for the HLIP portfolio. Finally, we

focus on the coefficient LNRC,HLIP of a predictive regression of HLIP returns on lagged nom-

inal real covariance analogous to the one in Equation (10) to test one of the key equilibrium

results of our model, the connection between the exogenous nominal-real covariance and the

endogenous returns.
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4.1 Results

Table 6 shows the calibrated parameters and Table 7 gives the resulting moments and their

data equivalents. The parameters for inflation imply that it is persistent over business cycle

frequencies but not in the longer run, with inflation shocks dissipating almost completely after

three years. Expected consumption growth is negatively exposed to inflation, with a one per-

centage point increase in inflation resulting in a 12.6 basis-point decline in consumption growth

next month (plus further declines in subsequent periods due to inflation’s persistence). The

contemporaneous correlation between consumption and inflation is small and not a significant

driver of our results, neither in the data, nor the model.

For preferences, we use ψ = 2 and γ = 14.5, which are within the range of values used in

the literature.8

Table 7 shows that the model can match means and standard deviations of returns and

betas for the H and L portfolios. For the HLIP, the model generates a volatility of returns and

betas lower than the H and L portfolios, as in the data. The spreads in mean returns and betas

between the H and L portfolios are driven mainly by the differences in their ρi and ξi. For

both portfolios, expected dividend growth is negatively exposed to inflation through ρi < 0 just

as consumption growth, although both portfolios are much more exposed than consumption;

the low beta portfolio’s exposure is more than one-for-one. On the other hand, the exposure

of expected dividend growth to inflation shocks, given by ξi, is of opposite sign to ξc for both

portfolios, which reduces the volatility of inflation betas and provides some hedging against

inflation shocks. The constant term in the price of inflation risk λu,t gives a Sharpe ratio of

−0.23, while its time-varying term implies an annualized volatility of 24%.

The last line of the table shows that the predictive regression coefficient LNRC,HLIP is in

line with the one found empirically in Table 4. To match this regression coefficient, it is key for

this predictability regression to have a volatile and persistent enough nominal-real covariance.

8For example, in a closely related model, Bansal and Shaliastovich (2013) use ψ = 1.81 and γ = 20.9.
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In contrast, to match the low observed volatility of consumption growth, ν and σw cannot

be too large. Matching both moments simultaneously gives quantitative credence to a pricing

mechanism operating through the consumption channel proposed in our model. The value of

ν implies a half-life for ϕt of ten years, confirming the slow-moving nature of the nominal real

covariance and the visual intuition of Figure 1. The calibrated values of ν and σw imply a

volatility of ϕt comparable to that of real consumption growth, at 1.5% in annualized terms.

Our calibrated parameters differentiate the risks we are considering from those in the long-

run risk literature despite the mathematical similarities in our models. The half-life of the

predictable component of inflation is one quarter, while it is around ten years in most long-run

risk calibrations. The half-life of the stochastic volatility of consumption growth in long-run

risk models is usually more than fifity years, compared with ten years for the nominal-real

covariance. On the other hand, the volatility of inflation is around a hundred times larger than

that of long-run risk, and the volatility of the nominal real covariance is an order of magnitude

larger than that of stochastic volatility. The lower persistences and higher volatilities of our

setup generate a market price of risk similar to the one for the higher persistence, lower volatility,

long-run risk model.

5 Industry Characterization and Robustness

In this section we analyze whether stock’s inflation exposures and inflation risk premiums

contain an industry component and describe a range of robustness checks.

5.1 Industry Composition of Inflation Portfolios

Having seen that inflation betas vary persistently and considerably over time and across stocks,

we move to an important determinant of a stock’s inflation beta: industry affiliation (see

also Boudoukh et al. (1994) and Ang et al. (2012)). To this end, we use Kenneth French’s
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classification into 48 industries. In each month of the sample and for each industry, we find

the stocks that have inflation beta above and below the cross-sectional median inflation beta

and calculate the fraction of the industry market capitalization allocated to each of these two

groups. To conserve space, we present in Table 8 the ten industries with on average the best

and worst inflation hedging capabilities. Our results are intuitive and in many ways consistent

with Ang et al. (2012). Among the best inflation hedgers are industries such as oil, gold,

utilities, and mining, for which industries over 64% of the market capitalization (on average)

has above median inflation beta. Among the worst inflation hedgers are industries such as banks,

insurance, clothes, and textiles, for which industries over 70% of the market capitalization (on

average) has below median inflation beta. This industry composition is quite stable over time.

Over half of the market capitalization of these same industries is allocated, respectively, to the

above and below median inflation beta groups in over 70% of the months in our sample. We

conclude that inflation betas contain an industry component. To address this evidence, we ask

in the following whether our evidence on the inflation risk premium is driven by within- or

across-industry variation, or both.

For the within-industry sort, we construct five market value-weighted stock portfolios within

each industry by splitting at the quintiles of ranked inflation betas of the stocks within that

industry. This gives us a total of 48-by-5 value-weighted portfolios. We then collapse the across-

industry dimension by calculating the industry inflation beta as the value-weighted average

inflation beta of all stocks in that industry and sorting the 48 industries into quintile portfolios.

This leaves us with a 5-by-5 within- and across-industry sort. We exclude industry-months that

contain fewer than ten stocks.

In Table 9, we replicate our main evidence on post-ranking betas and the inflation risk

premium. We first collapse the five-by-five within- and across-industry sort into five within-

industry portfolios and five across-industry portfolios. The within-industry portfolios are com-

puted by averaging over five across-industry portfolios for each within-industry quintile. The

across-industry portfolios are calculated as the equal-weighted average of the nine or ten in-
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dustries that belong to the relevant quintile of the across-industry sort. The aggregate within-

industry effect is presented in the sixth column and is the difference between the high and low

within-industry portfolio return. The across-industry effect is in the twelfth column and is the

difference between the high and low across-industry portfolio return.

In short, our main results extend in both dimensions. First, post-ranking beta is increasing

in inflation beta both within- and across-industry. Second, the unconditional inflation risk

premium is marginally negative both within- and across-industry at -1.71% (t = −1.38) and

-2.89% (t = −1.78), respectively. Third, the nominal-real covariance predicts the returns with

a positive and significant coefficient of 3.25% and 4.63%, respectively, at the twelve-month

horizon. In both cases, these three results follow from monotonic effects from high to low

inflation beta. In summary, this evidence suggest that although a sort on inflation beta in

the CRSP universe contains a strong industry component, our evidence on the inflation risk

premium is not solely driven by (across-) industry effects. Thus, variation in inflation beta

within industries, perhaps due to differences in corporate hedging practices, market power (see

also Weber (2016)), or the place of a firm in the supply chain, is priced in a manner consistent

with our hypothesis, even when the industry at large is not strongly exposed to inflation.

5.2 Robustness Checks

We next describe a range of robustness checks for our main results that we report in the Internet

Appendix.

5.2.1 Controlling for Benchmark Asset Pricing Factors

We perform two tests to analyze whether the inflation risk premium and its variation with the

nominal-real covariance are robust to controlling for the standard asset pricing factors of the

CAPM, Fama-French three-factor model (FF3M), the Fama-French-Carhart model (FFCM),

and the Fama-French five-factor model (FF5M).
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First, we control for ex ante exposure to the benchmark factors when estimating stock’s

inflation exposures using Equation (1). Table IA.3 reports the predictive regressions for our

inflation mimicking portfolios. We see that both the unconditional inflation risk premium as

measured by the intercept of the predictive regression as well as the coefficient on the nominal-

real covariance are consistent in magnitude and significance with what we have seen before.

We thus conclude that the inflation risk premium is robust to controlling for the benchmark

factors ex ante.

Second, we control for these benchmark factors ex post. It could be that the inflation risk

premium estimated in Section 2.2 is exposed to these factors, but due to measurement error or

correlation between the factors and inflation innovations this is not controlled for completely

when including these factors ex ante. To this end, we regress the inflation risk premium on

NRCC
t as in Table 4, but now controlling for contemporaneous exposure to these benchmark

factors following the approach of, e.g., Baker and Wurgler (2006):

Rp,t+1:t+H = L0 + LNRCNRC
C
t + β

′

FFt+1:t+H + εt:t+H , (38)

where Ft+1:t+H contains a subset of the following factors:

(RMKT,t+1:t+H , RSMB,t+1:t+H , RHML,t+1:t+H , RMOM,t+1:t+H , RPROF,t+1:t+H , RINV,t+1:t+H)
′
.

The evidence reported in Table IA.4, shows qualitatively and quantitatively robust estimates

for LNRC , which supports our previous conclusion that that the positive relation between the

inflation risk premium and lagged nominal-real covariance is not due to benchmark factor expo-

sure. The estimated unconditional inflation risk premium, L0, falls in magnitude as benchmark

factors are added and, in fact, is not significantly different from zero when controlling for the

FFCM and FF5M. This finding is consistent with the idea that the factors (and their un-

derlying firm characteristics) are associated to unconditionally priced inflation risk. However,

this association is not strong enough to also capture the time-variation with the nominal-real

covariance.
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5.2.2 Controlling for Benchmark Predictors

Table IA.5 presents results controlling for alternative time-series predictors that previous liter-

ature finds to predict aggregate stock market returns or macroeconomic activity, or both. To

be precise, we run predictive regressions of inflation portfolio returns on lagged nominal-real

covariance, controlling for either the standard Intertemporal CAPM predictors: dividend yield

(DY), default spread (DS), and term spread (TS) (as used in Goyal and Welch (2008), Maio

and Santa-Clara (2012) and Boons (2016)) or the consumption-wealth ratio (CAY) from Lettau

and Ludvigson (2001a, 2001b).9 Formally,

Rp,t+1:t+H = L0 + LNRCNRC
C
t + ζ

′

XXt + εt:t+H , (39)

where Xt = (DYt, DSt, TSt)
′

or Xt = CAYt, and all control variables are standardized just

like NRCC
t . In short, we see that our conclusions on the magnitude and significance of the

unconditional inflation risk premium, as measured by L0, and the time-variation with NRCC
t ,

as measured by LNRC , are robust to the inclusion of these benchmark predictors. This finding

supports the conclusion that our evidence on the time-varying inflation risk premium represents

a new pattern in both the cross section and time series of equity risk premiums.

5.2.3 The Inflation Risk Premium within Size groups

In Table IA.6, we analyze the magnitude and time-variation of returns on High-minus-Low

inflation spreading portfolios within the three size groups: Micro, Small, and Big. For this

exercise, we consider both value- and equal-weighted portfolios. In Panel A, we see that the

unconditional inflation risk premium is negative in all size groups, although it is largest eco-

nomically for Big stocks. This result is especially clear for equal-weighted portfolios, where the

High-minus-Low spread is only -0.15 among Micro stocks, relative to -4.06 and -5.24 among

9We thank the authors for sharing the data on their website. Since our data is monthly, we use the quarter
t observation of CAY also to predict returns in the first two months of quarter t+ 1.
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Small and Big stocks. However, in all size groups, there is economically large and (marginally)

significant variation in the inflation risk premium over time, (i) when we split the sample in

a pre- and post-2002 period and (ii) when we regress inflation portfolio returns on the lagged

nominal-real covariance. From this evidence, we conclude that the unconditional inflation risk

premium is not present among the smallest of stocks. However, highlighting once more the

robustness of our main finding: the conditional variation in the inflation risk premium exists

among stocks of all sizes.

5.2.4 Alternative Measures of Inflation and Sorting Procedures

Finally, Table IA.7 of the Internet Appendix asks whether our results are robust to changing

the methodology in several dimensions as well as for inflation measures other than ARMA(1,1)-

innovations. To conserve space, we focus in these tests on the inflation risk premium measured

from High-minus-Low inflation spreading portfolios. First, following a suggestion by an anony-

mous referee, we estimate inflation betas by OLS using a standard 60-month rolling window

and perform a single sort, that is, without controlling for size. In this case, we see robust

evidence for a time-varying inflation risk premium from both the sample split around 2002 and

the predictive regressions, where the coefficient on the nominal-real covariance is similarly large

and significant as before. We note that the unconditional inflation risk premium is smaller in

magnitude, consistent with the size-effect documented in the previous subsection.

Second, we perform a two-way size-controlled sort exactly as described in Section 1, but now

we estimate stock’s exposures to (i) raw inflation; (ii) an AR(1) innovation in inflation; (iii) the

difference between inflation and the short-rate, which measure of inflation innovations is used

in Fama and Schwert (1977); and, (iv) real-time vintage CPI inflation, as in Ang et al. (2012).

The latter test represents a truly out-of-sample exercise, because here we also skip a month

after portfolio formation to take into account the reporting delay in inflation data. In all cases,

we find even stronger evidence than in Tables 3 and 4 (both economically and statistically) that
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the inflation risk premium is time-varying, and, in particular, with the nominal-real covariance.

The unconditional inflation risk premium is similar in magnitude and significance to what we

have seen above, except for the case of real-time vintage inflation where the estimate is negative,

but insignificant at -1.65%. We conclude that our estimates of the inflation risk premium and,

in particular, its variation over time are robust to alternative measures of inflation risk.

6 Conclusion

This paper provides new information about inflation risk in the economy by analyzing the

cross-section of stock returns. We find a substantial cross-sectional variation in inflation betas,

a sizable inflation risk premium, and a strong time-series variation in both inflation exposures

and risk premiums, that is driven by the variation in nominal-real covariance.

The unconditional price of inflation risk, a negative -4.2%, is consistent with the fact that

inflation predicts consumption with a negative sign historically. As a result, investors are willing

to hedge inflation by holding stocks with high inflation betas and hence accept their lower

returns. Recent literature finds that the nominal-real covariance is strongly time-varying, and

we are the first to show that betas and the inflation risk premium in the stock market are varying

over time in a consistent and economically important fashion. This risk premium is determined,

in sign and magnitude, by the nominal-real covariance such that a one standard deviation change

in the nominal-real covariance leads to a change in expected returns on inflation mimicking

portfolios by 4.5%. Looking at the cross-sectional distribution of the inflation exposures, we

find a spread in betas of around three among ten portfolios formed by sorting on inflation betas.

Moreover, the betas of those ten portfolios also vary considerably over time, i.e., a one standard

deviation change in the nominal-real covariance leads to a change in inflation beta of 1.55 on

average.

We develop an equilibrium model which builds on the empirical observation that inflation

today predicts real consumption growth in the future. Given that this predictive relation is
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determined by the time-varying nominal-real covariance, our model generates the dynamics of

the prices of inflation risk as well as the quantity of risk consistent with our empirical results.
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7 Model appendix

7.1 Model Solution

Conjecture that the log wealth-consumption ratio is

wct = A0 + A1πt + A2ϕt−1ut + A3ut + A4 (ϕt − ϕ̃0)2 , (40)

where

ϕ̃0 =
v2κ1 + v2κ1σw + 1

vκ1 + vκ1σw + 1
ϕ0 −

κ1ρc (φπ + κ1ξπ)

(φc + κ1ξc) (κ1ρπ − 1)

(v2κ1 + v2κ1σw − 1)

(vκ1 + vκ1σw + 1)

≈ ϕ0 when ν, κ1 ≈ 1, σw ≈ 0 and φπ, ξπ or ρc ≈ 0

A Campbell-Shiller approximation for the return on the aggregate wealth portfolio gives

rc,t+1 = κ0 + κ1wct+1 − wct + ∆ct+1 (41)

where

κ1 =
eE[wct]

eE[wct] + 1
(42)

κ0 = log
(
eE[wct] + 1

)
− eE[wct]

eE[wct] + 1
E [wct] (43)

are linearization constants and E[wct] is the unconditional mean of the log wealth-consumption

ratio. Using equations (17), (16), (18), (15), (40) and (41), the Euler equation for rc,t+1

0 = Et [mt+1 + rc,t+1] +
1

2
V art [mt+1 + rc,t+1] (44)
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gives

0 = rc0 +

(
θκ1A1ρπ − θA1 +

(
θ − θ

ψ

)
ρc

)
πt

+ (θκ1A1ξπ − θA3)ut

+

((
θ − θ

ψ

)
ξc − θA2

)
ϕt−1ut

+

(
1

2

(
φc

(
θ − θ

ψ

)
+ θκ1A2

)2

− θA4 + v2θκ1A4 + v2θκ1σwA4

)
ϕ2
t . (45)

where

rc0 = θ
(
κ0 + ln δ − A0 − A4ϕ̃

2
0 + (A0 + µπA1)κ1

)
+θ
(
vϕ2

0 (v + 2) + ϕ̃0ϕ0 (ϕ̃0ϕ0 − 2 (v + 1)) + 2σ2
w

)
κ1A4

+

(
θ − θ

ψ

)
µc +

1

2

(
θ − θ

ψ

)2

σ2
c

+θκ1

(
θκ1

2
(φπA1 + A3)2 + σwA4 ((1 + v)ϕ0 − ϕ̃0)2

)

In order for equation (45) to be satisfied, the coefficients in front of the time-varying state

variables must vanish, yielding

A1 =

(
1− 1

ψ

)
ρc

(1− κ1ρπ)

A2 =

(
1− 1

ψ

)
ξc

A3 =

(
1− 1

ψ

)
ρcκ1ξπ

(1− κ1ρπ)

A4 = − 1

2θ

(
φc

(
θ − θ

ψ

)
+ θκ1A2

)2

v2κ1 (σw + 1)− 1

The remaining constant A0 is determined by setting rc0 = 0, which we solve numerically.
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For the inflation portfolios, we conjecture the log price-dividend ratio is

pdi,t = D0i +D1iπt +D2iϕt−1ut +D3iut +D4i (ϕt − ϕ̃0i)
2 ,

where ϕ̃0i is a constant picked to ensure that the Euler equation has no terms linear in ϕt.

We solve for the coefficients Dji in the same way as for the coefficients Aj but using the Euler

equation

0 = Et [mt+1] + Et [ri,t+1] +
1

2
V art [mt+1] +

1

2
V art [ri,t+1] + Covt [mt+1, ri,t+1] (46)

for the return

ri,t+1 = κi,0 + κi,1pdi,t+1 − pdi,t + ∆di,t+1

where

κi,1 =
eE[pdi,t]

eE[pdi,t] + 1
(47)

κi,0 = log
(
eE[pdi,t] + 1

)
− eE[pdi,t]

eE[pdi,t] + 1
E [pdi,t] (48)

The solution for D1i, D2i and D3i are given by equations (33), (34) and (35) in the paper, while

D4i satisfies the quadratic equation

0 =

(
1

2
φc

(
θ

ψ
− θ + 1

)
− 1

2
κ1A2 (θ − 1)

)2

−1

2

(
φc

(
θ

ψ
− θ + 1

)
− κ1A2 (θ − 1)

)
(φi + κi,1Di,2)

+

(
1

2
φi +

1

2
κi,1Di,2

)2

− A4 (θ − 1)

−Di,4 + v2κi,1Di,4 + v2σ2
wκ

2
i,1D

2
i,4 + v2κ1A4 (θ − 1)

+4v2κ2
1σ

2
wA

2
4 (θ − 1)2 + 2v2κ1σ

2
wA4 (θ − 1)κi,1Di,4
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for which we take the positive root as our solution. Finally, we solve for D0i numerically by

setting the constant term in equation (46) to zero.

7.2 Estimation of Inflation and Consumption Growth Parameters

We choose parameters µπ, ρπ, φπ, ξπ by fitting an ARMA(1, 1) process, which corresponds

exactly to the specification in equation (??). Assuming {ut} is a white noise process, we use

inflation data to estimate the constants m0, m1 and m2 in equation

πt+1 = m0 +m1πt + ut+1 +m2ut (49)

by maximum likelihood over the same time period as in our empirical section. We get

m̂0 = 0.0028, (50)

m̂1 = 0.90, (51)

m̂2 = 0.57. (52)

Picking u0 = 0 and plugging the estimates (50)-(52) into equation (49) gives an estimated

path, {ût}Tt=1, for inflation shocks. The resulting sequence {ût} is identical to the one we use

in Section 2 to construct inflation betas, as they are both generated by the same estimation

procedure. The standard deviation of the estimated inflation shocks is

std (ût) = 0.0028 (53)
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and its mean is essentially zero. We map equations (50)-(53) to the model’s inflation parameters

as follows:

µπ = m̂0 = 0.0028,

ρπ = m̂1 = 0.897,

φπ = std (ût) = 0.0028,

ξπ = m̂2 × std (ût) = −0.0016,

where we identify the model’s ut with ût/std (ût) so that it has unit standard deviation.

To calibrate the consumption parameters, we use data on real consumption growth, the

series for the nominal-real covaraince NRCC
t constructed in equation (11) and ût to run the

following full-sample OLS regression:

∆ct+1 = g0 + g1πt + g2 ×NRCC
t+1ût+1 + g3 ×NRCC

t ût + g4ût+1 + g5ût + εt+1, (54)

where gi, i = 0, 1, ..., 5, are the regression coefficients we estimate and εt+1 is a mean-zero

regression residual. To translate regression (54) into the model’s consumption process, given

by equation (17), we equate the data-constructed NRCC
t with its model-implied analog θ

(12)
t ,

so that

NRCC
t = h12 +

ξc
φπ
ϕt. (55)

With the aid of equation (55), comparing equation (17) to equation (54) gives a mapping from

ĝi, std (ε̂t) and std (ût) to the model’s consumption parameters:
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µc = ĝ0 + ĝ1µπ = 0.0021,

ρc = ĝ1 = −0.126,

σc = std (ε̂t) = 0.0032,

ξc =
φπ

std (ût) ĝ2

= 0.0797.
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Table 1: Descriptive statistics
This table reports descriptive statistics in annualized percentages for CPI inflation (Πt),
ARMA(1, 1)-innovations in inflation (uΠ,t), consumption growth (Ct), the aggregate stock mar-
ket excess return (Rm,t), and the one month t-bill return (Rf,t). AR(1) is the first-order auto-
correlation coefficient. The sample period is from July 1962 to December 2014, which adds up
to 630 months.

Πt uΠ,t Ct Rm,t Rf,t

Mean 3.93 0.11 1.97 6.45 4.85
St. dev. 1.11 0.85 1.13 15.44 0.89
AR(1) 0.62 0.15 -0.17 0.07 0.97

Correlations
Πt 1 0.79 -0.18 -0.13 0.50
uΠ,t 1 -0.17 -0.12 0.15
Ct 1 0.17 0.01
Rm,t 1 -0.09
Rf,t 1
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Table 3: Overview of inflation beta sorted portfolios
This table presents the set of ten inflation beta-sorted portfolios and our resulting estimates
of the unconditional inflation risk premium, denoted HLIP, MCIP, and CSIP. HLIP is the
High-minus-Low decile spreading portfolio from this sort. MCIP is a maximum correlation
mimicking-portfolio that is constructed from a multiple regression of inflation innovations on
the ten inflation beta sorted portfolios. CSIP is the inflation risk premium estimated from a
cross-sectional regression of indvidual stock returns on lagged inflation betas (controlling for
size, book-to-market, and momentum). Panel A presents ex post inflation betas, βΠ,post, that
are estimated with a simple regression of portfolio returns on inflation innovations over the full
sample. t-statistics are in parenthesis and use Newey-West standard errors with lag length one.
Note that MCIP and CSIP are scaled to have the same post-ranking inflation beta as HLIP.
Panel A also presents summary statistics for each portfolio’s rolling inflation beta that is esti-
mated as explained in Section I.B, βΠ,post,t. Next, we present annualized performance statistics
and CAPM α’s for the portfolio returns over the full sample from July 1967 to December 2014
(Panel B) and split around December 2002 (Panel C).

H 2 3 4 5 6 7 8 9 L HLIP MCIP CSIP

Panel A: Ex post inflation exposures

βΠ,post -0.02 -1.03 -1.37 -1.86 -1.94 -2.40 -2.13 -2.85 -2.95 -3.02 3.00 3.00 3.00
t (-0.01) (-0.68) (-0.91) (-1.26) (-1.34) (-1.59) (-1.36) (-1.82) (-1.85) (-1.68) (4.38) (5.82) (4.69)

Avg. βΠ,post,t -2.59 -2.83 -3.05 -3.58 -3.83 -4.14 -3.98 -4.71 -4.69 -4.87 2.28 2.67 2.71
St. dev. βΠ,post,t 3.61 2.78 2.78 2.53 2.83 2.73 2.79 2.98 2.95 3.25 1.36 1.02 1.40

Panel B: The inflation risk premium over the full sample

Avg. Ret. 5.26 7.29 7.85 7.59 8.53 8.28 8.10 8.50 8.76 9.49 -4.23 -4.39 -4.21
t (1.59) (2.47) (2.88) (2.85) (3.20) (3.07) (2.94) (3.02) (2.99) (3.00) (-2.08) (-3.06) (-2.22)
Sharpe 0.23 0.36 0.42 0.41 0.46 0.44 0.43 0.44 0.43 0.44 -0.30 -0.44 -0.32
αCAPM -2.03 0.52 1.39 1.23 2.14 1.81 1.55 1.85 1.87 2.18 -4.21 -3.18 -3.79
t (-1.15) (0.38) (1.31) (1.21) (2.07) (1.68) (1.34) (1.48) (1.35) (1.38) (-1.83) (-2.06) (-1.80)

Panel C: The inflation risk premium split around 2002

Pre-2002

Avg. Ret. 1.84 4.42 5.74 5.87 6.97 6.96 6.95 7.84 8.38 9.33 -7.49 -5.85 -6.81
t (0.48) (1.25) (1.76) (1.82) (2.12) (2.04) (1.95) (2.14) (2.18) (2.26) (-3.01) (-3.33) (-2.91)
Sharpe 0.08 0.22 0.31 0.32 0.38 0.37 0.35 0.39 0.40 0.41 -0.54 -0.59 -0.52
αCAPM -3.58 -0.73 0.80 0.98 2.01 1.87 1.72 2.51 2.79 3.46 -7.04 -4.71 -6.02
t (-1.81) (-0.44) (0.63) (0.79) (1.63) (1.38) (1.17) (1.58) (1.62) (1.76) (-2.70) (-2.76) (-2.55)

Post-2002 minus Pre-2002

Avg. Ret. 13.53 11.34 8.37 6.80 6.17 5.25 4.58 2.62 1.50 0.62 12.92 5.79 10.30
t (1.54) (1.56) (1.23) (1.03) (0.93) (0.82) (0.72) (0.41) (0.23) (0.08) (2.58) (1.71) (2.21)
Sharpe 0.53 0.53 0.41 0.35 0.33 0.32 0.32 0.22 0.19 0.11 0.92 0.58 0.79
αCAPM 4.28 3.76 1.29 0.05 -0.25 -0.78 -0.81 -2.66 -3.38 -5.13 9.41 5.37 6.96
t (1.05) (1.32) (0.56) (0.02) (-0.11) (-0.38) (-0.39) (-1.22) (-1.35) (-1.77) (1.85) (1.40) (1.52)
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Table 6: Calibrated Parameters of the Model
This table reports the configuration of the parameters used in the calibration of the model.
The model is calibrated on a monthly decision interval.

Preferences
Discount factor δ 0.99
Elasticity of intertemporal substitution ψ 2
Risk aversion coefficient γ 14.5

Inflation
Mean of inflation rate µπ 0.0028
Inflation AR(1) coefficient ρπ 0.897
Inflation MA(1) coefficients φπ 0.0028

ξπ -0.0016

Consumption
Mean of real consumption growth µc 0.0021
Exposure of expected consumption to inflation ρc -0.126
Volatility of consumption-specific shocks σc 0.0032
Consumption exposure to inflation shocks ξc 0.0797

Nominal-real covariance
Mean of nominal-real covariance ϕ0 0.0017
Persistence of nominal-real covariance ν 0.994
Volatility of nominal-real covariance σw 4.86× 10−4

High inflation beta portfolio
Mean of dividend growth µH 7.6× 10−4

Exposure of expected dividends to inflation ρH -0.812
Exposure to consumption-specific shocks σH -0.074
Dividend exposure to inflation shocks φH 4.048

ξH -2.26

Low inflation beta portfolio
Mean of dividend growth µL 0.0073
Exposure of expected dividends to inflation ρL -1.175
Exposure to consumption-specific shocks σL -0.051
Dividend exposure to inflation shocks φL 4.85

ξL -3.34
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Table 7: Calibrated Moments
This table shows that the model can match means and standard deviations of returns and
betas, as well as the slope coefficient from regressing returns on high-minus-low portfolio on
the nominal-real covariance.

Data Model

E[πt] 3.93 3.93
[0cm] σ(πt) 1.11 2.52
[0cm]
E[∆ct] 1.97 2.50
[0cm] σ(∆ct) 1.13 2.01
[0cm]
corr(πt,∆ct) -17.8% -3.6%
[0cm]
E[RH ] 5.26 6.16
[0cm] σ(RH) 22.7 25.9
[0cm] E[βu,H ] -2.59 -2.22
[0cm] σ(βu,H) 3.61 3.17
[0cm]
E[RL] 9.49 9.00
[0cm] σ(RL) 21.78 18.29
[0cm] E[βu,L] -4.87 -4.25
[0cm] σ(βu,L) 3.25 2.65
[0cm]
σ(βu,HLIP ) 1.36 0.52
[0cm] σ(RHLIP ) 14.04 8.71
[0cm] LNRC,HLIP 4.47 4.33
[0cm]
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Table 8: Industry composition of inflation beta sorted portfolios
This table presents the industry composition of our sort. For this exercise, we use the classifica-
tion into 48 industries from Kenneth French’s web site. In each sample month, we find for each
industry the stocks that have inflation beta below or above the median inflation beta in the
full cross-section and translate this to the fraction of an industry’s total market capitalization
that has below or above median inflation beta. In the first three columns we report results for
the top 10 inflation hedgers, which are those industries with on average the largest fraction of
market cap in the above median inflation beta portfolio. For these industries we report the
average allocation to the above median portfolio (“% of market cap (βΠ,i,t >median)”) as well
as the fraction of total sample months in which the allocation to the above median portfolio is
larger than 50% (“% of months”). The next three columns present analogous evidence for the
top 10 worst inflation hedgers, which are those industries with on average the largest fraction
of market cap in the below median inflation beta portfolio. The sample period is July 1967 to
December 2014.

Top 10 best inflation hedgers Top 10 worst inflation hedgers

% of market cap % of market cap
(βΠ,i,t >median) % of months (βΠ,i,t ≤median) % of months

1 Oil 0.77 0.80 Other 0.82 0.94
2 Gold 0.73 0.76 Books 0.77 0.95
3 Utilities 0.66 0.68 Aerospace 0.76 0.89
4 Mines 0.64 0.70 Banks 0.74 0.84
5 Agriculture 0.62 0.71 Insurance 0.74 0.88
6 Paper 0.61 0.66 Meals 0.73 0.82
7 Computers 0.60 0.67 Lab Equipment 0.72 0.82
8 Steel 0.58 0.59 Clothes 0.71 0.79
9 Smoke 0.58 0.66 Textiles 0.71 0.82
10 Food 0.57 0.59 Personal Services 0.70 0.85
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8 Internet Appendix to “Time-Varying Inflation Risk

and the Cross-Section of Stock Returns”

This Internet Appendix presents a detailed description of the block-bootstrap and reports

results from a variety of robustness checks.

A Bootstrap algorithm

The block-bootstrap algorithm associated to the regressions of Table 2 and Table 4 consists of

the following steps:

1. In each replication m = 1, . . . , 500, we construct pseudo-samples for both consumption

growth and inflation by drawing with replacement Tm overlapping two-year blocks from:

{∆Cm
t+1:t+24,Π

m
t+1:t+24}, t = sm1 , s

m
2 , . . . , s

m
Tm (56)

where the time indices, sm1 , s
m
2 , . . . , s

m
Tm

, are drawn randomly from the original time se-

quence 1, . . . , T . The two-year block size is chosen to preserve the (auto-) correlation

between consumption growth and inflation in the data and to respect the estimation

setup in Equations 5 and 6 of the paper. Additionally, it is a way to conserve the size

of the cross-section in the resampled CRSP file (see Step 3 below). We join these blocks

to construct a monthly time-series matching the length of our sample from July 1967 to

December 2014.

2. For m = 1, . . . , 500, we run the two-stage tests described in Section 2.4 for the artificial

data:

∆Cm
t+1:t+K = dc,Km,0 + dc,Km,1(âKm,t−1 + b̂Km,t−1Πm

t ) + emt+1:t+K , where (57)

∆Cm
s+1:s+K = aKm,t−1 + bKm,t−1Πm

s + ems+1:s+K , s = 1, ..., t−K, (58)
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and save the estimates dc,Km,0, dc,Km,1, and b̂Km,t−1, forK = {1, 3, 6, 12}. The bootstrap standard

errors reported in Table 2 are calculated as the standard deviation of dc,Km,0 and dc,Km,1 over

the 500 bootstrap replications. The bootstrap estimates, b̂Km,t−1 for K = 12, are going to

be used to get the bootstrap standard errors for Table 4 in the paper.

3. To be precise, using the same time indexes sm1 , s
m
2 , . . . , s

m
Tm

, we construct 500 block-

bootstrap samples for all firms i = 1, . . . , I in the CRSP file. To be consistent with

the data, we bootstrap both returns, Rt+1 = {R1,t+1, R2,t+1, . . . , RI,t+1}′, and firm charac-

teristics, Zt = {MVt, BMt,MOMt}, with, e.g., MVt = {MV1,t,MV2,t, . . . ,MVI,t}′, such

that:

{Rm
t+1:t+24, Z

m
t:t+24−1}, t = sm1 , s

m
2 , . . . , s

m
Tm . (59)

Notice that the characteristics are lagged by one month just like in the data. We join

these blocks to construct 500 artificial CRSP files matching the length of our sample.

4. In each replication, we estimate at the end of month t and for each artificial stock i its

exposure to ARMA(1,1)-innovations in inflation, denoted umΠ,t+1. The ARMA model is

estimated for the inflation series described under Step 1. The inflation betas are estimated

using the WLS-Vasicek procedure described in Section 2 of the paper. We require that an

artificial stock return series has at least 24 out of the last 60 months of returns available to

estimate inflation beta, βmΠ,i,t. Since many stocks have some missing returns in the CRSP

file, due to late introduction or early exit, the overlapping block-bootstrap reduces the

number of firms that satisfy this requirement relative to the data. However, we end up

with about two-thirds of the number of firms that we use in the data in each bootstrapped

cross-section. This indicates that the cross section is large still and to the extent that

this reduction adds noise, this should bias against finding our results to be significant.

5. For m = 1, . . . , 500 and at the end of each month t, we then sort the artificial stocks

on these inflation betas and their market values to construct the ten value-weighted
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size-controlled inflation sorted portfolios that feature prominently in the paper, Rm
p,t+1 =

{Rm
High,t+1, R

m
2,t+1, . . . , R

m
Low,t+1}. The three bootstrap estimates of the inflation risk pre-

mium are constructed as follows. First, we take the High-minus-Low spreading portfo-

lio from this sort: Rm
HLIP,t+1 = Rm

High,t+1 − Rm
Low,t+1. Second, we regress the artificial

ARMA(1,1)-innovations in inflation, umΠ,t+1, on the inflation sorted portfolios to construct

the maximum correlation inflation mimicking portfolio:

umΠ,t+1 = interceptm + weights′m ×Rm
p,t+1 + emt+1, (60)

such that Rm
MCIP,t+1 is the portfolio return weights′m × Rm

p,t+1. Finally, we run a cross-

sectional regression of returns on lagged inflation betas, where we control for the firm

characteristics:

Rm
i,t+1 = lm,0,t + lm,Π,tβ

m
Π,i,t + lZ,tZ

m
n,t + umt+1, (61)

where we save the time-series of coefficient estimates lm,Π,t, representing our third estimate

of the inflation risk premium Rm
CSIP,t+1.

6. For each replication, we then run the predictive regression described in Section 3.2 of the

paper. That is, we regress returns on the artificial inflation portfolios and risk premiums

(compounded over horizons H = 1, 3, 12 months) on the lagged nominal-real covariance

(i.e., the bootstrap coefficient estimate b12
m,t−1 from Step 2 above) using:

{Rm
p,t+1:t+H , R

m
HLIP,t+1:t+H , R

m
MCIP,t+1:t+H , R

m
CSIP,t+1:t+H} = Lm,0 + Lm,NRCb

12
m,t−1 + εmt:t+H .

(62)

The timing in the different steps of the bootstrap is consistent with the data so that the

timing of the left-hand side returns is strictly after the timing of consumption growth

and inflation used to estimate the right-hand side nominal-real covariance. We use the

standard deviation of the estimates Lm,0 and Lm,NRC over the 500 bootstrap replications
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as the standard error for the predictive regressions of Table 4.

B Supplementary Results
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Table IA.5: Predicting the inflation risk premium controlling for benchmark pre-
dictors
This table presents coefficient estimates from predictive regression of inflation portfolio returns
on lagged NRC controlling for either the dividend yield (DY), default spread (DS), and term
spread (TS) or the consumption-wealth ratio (CAY). All control variables are standardized
just like NRC. To conserve space, we present t-statistics in parentheses (based on Newey-West
standard errors with H lags) only for the intercept, L0 , and coefficient on NRCC

t , LNRC .

HLIP MCIP CSIP HLIP MCIP CSIP

H=1 L0 -4.23 -4.39 -4.21 -4.23 -4.39 -4.21
t (-1.95) (-2.92) (-2.07) (-1.95) (-2.92) (-2.08)
LNRC 5.86 3.26 3.13 4.52 2.31 3.88
t (2.02) (1.75) (1.15) (1.82) (1.31) (1.65)
DY 1.92 0.90 -1.79
DS 1.48 0.12 0.28
TS 0.36 -1.31 -0.16
CAY 0.12 -1.01 -0.16
R2 0.43 0.18 0.16 0.50 0.36 0.41

H=3 L0 -4.27 -4.19 -3.93 -4.27 -4.19 -3.93
t (-2.04) (-2.90) (-2.19) (-2.03) (-2.89) (-2.19)
LNRC 6.81 3.99 3.69 5.17 3.19 4.09
t (2.39) (2.17) (1.54) (2.09) (1.90) (1.93)
DY 2.41 1.26 -1.35
DS 1.68 0.08 0.19
TS 1.58 -0.24 0.38
CAY 0.04 -0.33 -0.55
R2 3.10 1.97 1.84 2.31 2.03 2.02

H=12 L0 -4.37 -4.25 -3.94 -4.37 -4.25 -3.94
t (-1.76) (-2.66) (-2.35) (-1.67) (-2.63) (-2.31)
LNRC 7.19 4.50 4.26 5.29 3.46 4.39
t (2.13) (2.30) (1.81) (1.81) (2.00) (2.35)
DY 2.34 1.36 -1.63
DS 2.53 0.42 2.05
TS 3.32 1.05 0.84
CAY -0.24 -0.71 -0.30
R2 11.93 8.59 11.82 6.50 7.71 9.55
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Table IA.6: Inflation risk premium (predictability) within size groups
This table presents unconditional performance and NRC-predictability for the returns of High-
minus-Low inflation risk spreading portfolios and within size groups. Micro, Small, and Big
stocks are separated at the 20th and 50th percentile of NYSE market capitalization and we
construct both value-weighted and equal-weighted portfolios. Panel A presents average returns
over the full sample as well as for the sample split around 2002. Panel B presents results for
a predictive regression of inflation portfolio returns on lagged NRC. t-statistics are reported in
parentheses.

Value-weighted Equal-weighted
Micro Small Big Micro Small Big

Panel A: Average returns in subsamples

Full sample
Avg. Ret. -3.65 -3.73 -5.31 -0.15 -4.06 -5.24
t (-2.07) (-1.53) (-1.88) (-0.09) (-1.74) (-2.06)

Pre-2002
Avg. Ret. -5.50 -7.32 -9.66 -2.57 -7.50 -8.95
t (-2.63) (-2.69) (-2.66) (-1.25) (-2.89) (-2.76)

Post-2002 minus Pre-2002
Avg. Ret. 7.30 14.25 17.20 9.58 13.63 14.66
t (1.73) (2.19) (2.76) (2.22) (2.14) (2.45)

Panel B: Predictive regressions
H=1
L0 -3.65 -3.73 -5.31 -0.15 -4.06 -5.24
t (-2.01) (-1.48) (-1.76) (-0.08) (-1.67) (-1.91)
LNRC 2.99 5.97 4.46 2.55 5.78 4.86
t (1.64) (2.42) (1.53) (1.40) (2.43) (1.88)
R2 0.33 0.88 0.26 0.19 0.90 0.46
H=3
L0 -3.65 -3.80 -5.29 -0.02 -4.16 -5.25
t (-2.13) (-1.53) (-1.86) (-0.01) (-1.75) (-1.99)
LNRC 3.80 6.79 4.83 3.39 6.57 5.44
t (2.14) (2.73) (1.77) (1.96) (2.80) (2.24)
R2 1.91 3.04 1.11 1.55 3.04 1.77
H=12
L0 -4.10 -4.02 -4.79 0.43 -4.40 -4.95
t (-1.88) (-1.45) (-1.41) (0.18) (-1.72) (-1.56)
LNRC 4.25 7.32 4.23 3.99 7.06 5.02
t (2.20) (2.65) (1.40) (1.70) (2.84) (1.85)
R2 6.05 9.65 2.45 4.27 10.29 3.98
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Table IA.7: Alternative measures of inflation risk
This table asks whether our results for alternative measures of inflation risk. For the first
column of results, we estimate exposures to ARMA(1,1) innovations in inflation by OLS using
a standard 60-month rolling window and perform a single sort, that is, without controlling
for size. For the remaining four columns, we vary the inflation measure, but estimate betas
using WLS and shrinkage, as described in Section ? of the paper. In column two, we use
raw inflation (Πt). In column three, we use an AR(1)-model to proxy for inflation-innovations
(uAR1

Π,t ). In column four, we use the difference between inflation and the short-rate to proxy
for inflation-innovations (Πt −Rf,t). In column five, we perform a truly out-of-sample exercise
using real-time vintage CPI inflation (Πreal−time

t ). For this exercise, we skip a month after
portfolio formation, thus taking into account the reporting delay in inflation data. In all five
cases, we calculate the returns of the High-minus-Low inflation risk spreading portfolio (HLIP).
We present in Panel A average returns in subsamples; and in Panel B, a regression of returns
on the lagged nominal-real covariance (NRCC

t ). We report for each regression the estimated
coefficients, with corresponding t-statistics in parentheses based on Newey-West standard errors
with H lags, and the adjusted R2 (in percentage points). The sample period is from July 1967
to December 2014, except for Πreal−time

t , which sample ends in December 2012.

Inflation measure uΠ,t Πt uAR1
Π,t Πt −Rf,t Πreal−time

t

Inflation beta method OLS, No size control WLS WLS WLS WLS

Panel A: Average returns in subsamples

Full sample
Avg. Ret. -2.72 -3.79 -3.88 -5.13 -1.65
t (-1.01) (-1.75) (-1.93) (-2.30) (-0.75)

Pre-2002
Avg. Ret. -6.55 -7.49 -6.84 -9.03 -4.96
t (-2.01) (-2.86) (-2.85) (-3.36) (-1.89)

Post-2002 minus Pre-2002
Avg. Ret. 15.15 14.67 11.69 15.45 15.03
t (2.53) (2.79) (2.34) (3.04) (2.71)

Panel B: Predictive regressions
H=1
L0 -2.72 -3.79 -3.88 -5.13 -1.65
t (-0.99) (-1.66) (-1.83) (-2.25) (-0.72)
LNRC 4.98 6.03 3.92 6.88 6.88
t (1.89) (2.59) (1.83) (3.01) (2.90)
R2 0.42 1.19 0.49 1.49 1.61
H=3
L0 -2.88 -3.89 -3.89 -5.30 -1.94
t (-1.16) (-1.86) (-1.93) (-2.59) (-0.91)
LNRC 5.50 6.69 4.61 7.69 7.35
t (2.22) (2.99) (2.19) (3.53) (3.10)
R2 1.85 3.86 2.03 5.34 4.68
H=12
L0 -3.11 -3.89 -3.92 -5.48 -2.06
t (-1.10) (-1.74) (-1.73) (-2.48) (-0.96)
LNRC 5.38 7.35 5.08 8.55 7.84
t (2.11) (3.25) (2.33) (3.98) (3.35)
R2 5.29 14.30 7.26 18.83 16.12
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