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Abstract

We use an asset pricing approach to compare the effects of expected liquidity

and liquidity risk on expected U.S. corporate bond returns. Liquidity measures

are constructed for bond portfolios using a Bayesian approach to estimate Roll’s

measure. The results show that expected bond liquidity and exposure to equity

market liquidity risk affect expected bond returns, and that these liquidity effects

explain a substantial part of the credit spread puzzle. In contrast, we find robust

evidence that exposure to corporate bond liquidity shocks carries an economically

negligible risk premium. We develop a simple theoretical model to explain this

result.
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1 Introduction

Illiquidity plays a major role in corporate bond markets. While some corporate bonds

are traded on a daily basis, many other bonds trade less frequently. The corporate bond

market is therefore very well suited to study the price effects of liquidity. Several studies

have recently examined whether illiquidity affects corporate bond prices. Most of these

studies regress a panel of credit spreads on liquidity measures, thus using liquidity as a

bond characteristic. A few recent articles analyze whether there is a premium associated

with exposure of corporate bond returns to systematic liquidity shocks in the corporate

bond market or equity market (see Section 2).

The first contribution of this paper is that we integrate these two approaches. We

perform a detailed comparison of the effects of liquidity as a bond characteristic (liquidity

level) and various forms of liquidity risk (both equity market liquidity risk and corporate

bond liquidity risk). We do this using a formal asset pricing approach. Given that

liquidity level and liquidity risk exposures are typically highly correlated, neglecting

either the liquidity level or liquidity risk may lead to misleading conclusions on the

effects of these different liquidity measures (Acharya and Pedersen (2005) illustrate this

for the equity market). Determining which liquidity channel is most important is relevant

for several reasons. First, most theoretical models that generate price effects of liquidity

focus on the liquidity level, and not on liquidity risk (see, for example, Vayanos (2004)

and Vayanos and Wang (2009)). Second, the extent to which optimal financial portfolios

are affected by illiquidity also depends on whether liquidity risk or the liquidity level

is priced. Finally, disentangling these liquidity effects is important for the valuation

of illiquid assets (Longstaff (2010)). Our results show that both the liquidity level and

exposure to equity market liquidity risk have a strong and robust effect on corporate bond

prices, while the effect of systematic corporate bond liquidity risk is mostly insignificant
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and always economically negligible.

Why is corporate bond liquidity risk not priced, while exposure to equity market

liquidity risk does carry a risk premium? Our second contribution is to provide a simple

theoretical model that explains these empirical findings. In our model, investors prefer

to trade and rebalance their portfolio using liquid assets such as equities, and avoid

trading in the relatively illiquid corporate bonds as much as possible.1 Our model then

predicts that the liquidity risk associated with relatively liquid assets such as equities

is important and carries a risk premium, since this liquidity risk captures the extent

to which trading costs increase in bad times. In contrast, exposure to liquidity risk of

illiquid assets (corporate bonds) will not be priced in equilibrium since these shocks are

less relevant for the investor as he avoids trading these illiquid assets when transaction

costs are high. To provide empirical evidence for this hypothesis, we analyze turnover

patterns in the equity and corporate bond market. We find that average turnover in the

corporate bond market is much lower than turnover in the equity market. In addition,

we find that corporate bond turnover goes down in bad times (when prices decline and

liquidity costs go up). In contrast, for equity markets turnover actually increases in bad

times, in line with the notion that in bad times, investors need to trade more and choose

to use the most liquid assets to do so.

Our third contribution is to show that our liquidity-based asset pricing model sheds

light on the “credit spread puzzle”. This puzzle states that credit spreads and expected

returns on corporate bonds are much higher than what can be justified by expected losses

and exposure to market risk factors (see Elton, Gruber, Agrawal and Mann (2001) and

Huang and Huang (2003)). We show that liquidity effects play an important role in

explaining this credit spread puzzle. Especially for high-rated bonds, a considerable

1Indeed, several articles study optimal rebalancing of assets in case of transaction costs, and derive
no-trade ranges that are higher when transaction costs are higher (see Constantinides (1986) for a
seminal contribution).
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part of the expected return can be explained by the illiquidity of these bonds.

This paper is related to existing work on corporate bonds and liquidity. As discussed

in Section 2 in more detail, our paper thus contributes to this literature by (i) studying

both expected liquidity and liquidity risk effects (using a formal asset pricing model with

forward-looking expected returns), (ii) developing a simple theoretical model to explain

why corporate bond liquidity risk is not priced, and (iii) studying the implications for

the credit-spread puzzle.

Our analysis uses data from TRACE (Trade Reporting and Compliance Engine) for

a 2005 to 2008 sample period, which thus includes the 2007-2008 crisis period. Since

2005 essentially all U.S. corporate bond transactions have been recorded in TRACE. We

have data at the transaction level but do not know who initiated the trade. We also do

not have price quotes hence we cannot use the Lee and Ready (1991) method to assess

the trade directions. In this context, Hasbrouck (2009) proposes a Bayesian approach to

estimate the Roll (1984) measure of effective transaction costs. We extend his approach

to a portfolio setting and adapt it to fit the bond market. Using the Gibbs sampler, this

approach provides us with time series of returns and liquidity estimates at the portfolio

level. For the equity market liquidity, we use both Amihud’s (2002) ILLIQ measure and

the Pastor-Stambaugh (2003) measure.

A critical issue in any asset pricing test is the measurement of expected returns. This

is particularly true for corporate bonds. Average returns on corporate bonds critically

depend on the number of defaults over the sample period, and given the rare occurrence

of default events this implies that average returns are noisy estimates of expected returns.

In addition, transaction data for corporate bonds are only available for short sample

periods. Also, using average returns in the presence of microstructure noise may bias

towards finding liquidity effects, see Asparouhova, Bessembinder, and Kalcheva (2010).
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Therefore, we follow Campello, Chen and Zhang (2008), de Jong and Driessen (2006)

and Bongaerts, de Jong and Driessen (2011) and construct forward-looking estimates of

expected returns. We do this by correcting the credit spread, which captures the return

of holding corporate bonds to maturity in excess over the government bond return, for

the expected default losses. This expected loss is calculated using default probability

estimates from Moody’s-KMV and assumptions on the loss rate in case of default.

We then construct various double-sorted corporate bond portfolios, sorting first on

credit quality (credit rating, estimated default probabilities) and then on liquidity proxies

(trading volume, bond age, amount issued, liquidity betas). In a first step, we estimate

exposures of these portfolio returns to equity market risk, volatility risk, corporate bond

liquidity risk and equity market liquidity risk. Corporate bond liquidity risk is captured

by innovations in the aggregate Roll measure. In a second step, we regress the cross-

section of forward-looking expected returns on the portfolio liquidity levels, market betas

and the various liquidity betas.

The first-step results show that corporate bonds have significant exposures to equity

market returns, volatility risk, corporate bond market returns, and systematic liquid-

ity risk measures for the equity and corporate bond markets. Equity market returns,

volatility risk and liquidity risk together explain about 65% of the time-series variation

in corporate bond returns.

The second-step cross-sectional regressions generate several key findings. First,

the liquidity level (expected liquidity) substantially affects expected returns, leading to

higher expected returns for portfolios with lower expected liquidity, even when control-

ling for equity market, liquidity and volatility factors. This expected liquidity premium

is both economically and statistically significant. Second, we find that exposure to eq-

uity market liquidity risk is also priced, irrespective of whether we use the Amihud or
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Pastor-Stambaugh measure. Third, the corporate bond liquidity risk premium is eco-

nomically negligible in all specifications. Finally, we also find significant and robust

premia for equity market risk and volatility risk.

The finding that corporate bond liquidity risk is not priced is surprising, especially

given existing work (which we discuss in Section 2). We therefore perform several ro-

bustness checks to validate this result. First, we find similar results when using a Fama-

MacBeth approach where we incorporate time-variation in expected returns, betas and

liquidity levels. Second, using a pre-crisis subsample also generates very similar results.

Third, we construct portfolios that are directly sorted on corporate bond liquidity be-

tas and find that even in the cross-section of these portfolios corporate bond liquidity

risk is not priced. Fourth, instead of using Roll’s liquidity measure, we use the market

average of the imputed roundtrip cost measure of Feldhütter (2011) and Dick-Nielsen,

Feldhütter and Lando (2011) to measure corporate bond liquidity risk. This does not

affect the results. In fact, this measure is highly correlated with the aggregate Roll

measure of corporate bond liquidity risk. Fifth, it may be that liquidity and credit risk

are correlated. We therefore include the Moody’s-KMV default probability estimates as

a control variable, and find that the results do not change substantially. Finally, we use

an alternative liquidity pricing model, following Acharya and Pedersen (2005) and Bon-

gaerts, de Jong and Driessen (2011). In these models various liquidity covariances can

affect expected returns, but our results show that the premia related to these corporate

bond liquidity risk measures have a negligible effect on expected returns.

Another concern could be that estimation error in the corporate bond liquidity betas

makes it hard to find a substantial risk premium, thus making the comparison with

liquidity level unfair. We deal with this in several ways. First, we note that in the first-

step time-series regressions corporate bond liquidity betas are estimated quite precisely,

with an average t-statistic of −8.6 in univariate regressions and −4.0 in multivariate
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regressions. Second, we stress that the liquidity level is also estimated with error. In

fact, the average t-statistic of the liquidity level estimate is equal to 6.2, hence in the

same range as the liquidity beta t-statistics. Third, the time-series regressions show

that corporate bond liquidity shocks alone explain 26.8% of the time-series variation in

corporate bond returns, which shows that our corporate bond liquidity measure does

not simply reflect noise. Fourth, a final concern could be that the significance of the

liquidity beta estimates is driven only by the large liquidity shocks in the Fall of 2008.

We therefore use a subsample up to August 2008 and find average t-statistics of liquidity

betas of −7.5 (univariate) and −5.7 (multivariate).

In sum, we show that an asset pricing model with expected liquidity and premia

to equity market liquidity risk, equity market risk and volatility risk provides a very

good fit of expected bond returns, with a cross-sectional R2 of about 70%. Across all

portfolios, the average expected excess bond return equals about 1.9% per year, of which

about 1% is due to expected liquidity, while equity market liquidity risk, equity market

risk and volatility risk each contribute about 0.3% to the expected excess return. This

model fits both expected returns on high-rated and low-rated bonds very well, and thus

goes a long way in explaining the credit spread puzzle. Including expected liquidity is

particularly important for explaining the high returns on high-rated bonds.

The remainder of this paper is organized as follows. In Section 2 we discuss the

related literature. Section 3 introduces the asset pricing models that we estimate. Sec-

tion 4 describes the data and the Bayesian approach to estimate Roll’s model. Section

5 contains the empirical results. Section 6 presents various robustness checks. Section 7

concludes.
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2 Comparison with existing literature

Our paper is related to two streams in the literature on corporate bonds and liquidity.

The first stream uses liquidity as a bond characteristic, and analyzes, typically in a panel

setting, the relation between the credit spread on a corporate bond and its liquidity. This

stream includes Houweling, Mentink and Vorst (2005), Covitz and Downing (2006),

Nashikkar and Subrahmanyam (2006), Chen, Lesmond and Wei (2007), Bao, Pan and

Wang (2010), and Friewald, Jankowitsch and Subrahmanyam (2010). Our paper differs

from this stream in two important ways. First, instead of analyzing credit spreads in a

panel setting, we estimate a formal asset pricing model, where we explain (in two steps)

the time-series of returns and the cross-section of expected returns. Second, we include

both liquidity level (a bond characteristic) and several liquidity risk exposures in the

asset pricing model. The advantage of an asset pricing model is that it puts structure on

the model specification and allows for a direct interpretation of the coefficients in terms

of risk exposures and risk premia.

The second, smaller, stream in this literature analyzes the effect of liquidity risk on

corporate bonds. De Jong and Driessen (2006) show that equity market liquidity risk

is priced in a cross-section of corporate bond portfolios, while Acharya, Amihud and

Bharath (2010) show that corporate bonds are exposed to liquidity shocks in equity and

treasury markets. Both articles do not investigate corporate bond liquidity risk, nor do

they incorporate the liquidity level.

Four recent articles study the pricing of corporate bond liquidity risk. Dick-Nielsen,

Feldhütter and Lando (2011) mainly focus on liquidity levels to explain credit spread

levels (while we analyze expected returns), but do find some effect of liquidity betas on

credit spread levels as well. However, their focus is on explaining the panel of individual

credit spreads within each rating category, while our focus is to explain variation across
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portfolios sorted on credit and liquidity proxies. They do not estimate an asset pricing

model. For example, the coefficient on liquidity betas (the liquidity risk premium) is

estimated separately for each rating category, which results in very different coefficient

estimates. Chacko (2005), Downing, Underwood and Xing (2005), and Lin, Wang and

Wu (2010) construct various corporate bond liquidity risk measures, and show these are

priced in a cross-section of corporate bond returns. There are two important differences

between these three studies and our work. First, we include both expected liquidity and

liquidity risk. As discussed in the introduction, given that liquidity level and liquidity

risk exposure are correlated, omitting one of the two may affect the results. Indeed, if we

only include corporate bond liquidity risk exposure in our regressions (without liquidity

level or market risk exposures), we do find a significant corporate bond liquidity risk

premium, although the effect is economically small.2 Second, while the existing studies

use realized corporate bond returns to estimate expected returns, our work complements

these studies by using a forward-looking measure of expected returns. Given the short

sample period available for corporate bonds, and given the skewed nature of corporate

bond returns (depending on the number of defaults in the sample period), we believe that

it is worthwile to explore the effects of liquidity on forward-looking expected returns. A

further concern is survivorship bias. In actual returns of defaulted bonds, the returns

at default often do not show up leading to upward biased average returns. In our

forward looking measure, we account properly for the possibility of default events. An

additional argument for using forward-looking expected returns is that using average

returns in the presence of microstructure noise may bias towards finding liquidity effects

(see Asparouhova, Bessembinder, and Kalcheva (2010)).

2Lin, Wang, and Wu (2010) provide a robustness check where they control for the liquidity level,
by multiplying Amihud’s ILLIQ measure with the turnover rate of corporate bonds and subtracting
this from the average bond returns. This assumes that the ILLIQ level itself equals the transaction
costs of trading, which is not necessarily the case as the scale and the trend in these measures are quite
different, see Acharya and Pedersen (2005).

8



Our paper is also related to the broader literature investigating liquidity effects in

financial markets. In particular, and in line with out findings, several articles have

found that equity market liquidity risk is priced outside the cross-section of equities (see

for example Franzoni, Novak, and Phalippou (2011) for the private equity market and

Sadka (2009) for hedge funds). Also related is recent work of Lou and Sadka (2010)

that compares the role of liquidity level and liquidity risk in the equity market during

the recent financial crisis, and finds that stocks with high liquidity risk underperformed

during the crisis relative to stocks with low liquidity risk, while there is less effect of

liquidity level on returns during the crisis.

Finally, our liquidity-based asset pricing model helps to explain the “credit spread

puzzle”. In addition to the seminal work of Elton et al. (2001) and Huang and Huang

(2003), previous work on this puzzle includes Cremers, Driessen and Maenhout (2005),

David (2008) and Chen, Collin-Dufresne and Goldstein (2009). None of these articles

incorporates liquidity effects.

3 Asset pricing model

In the benchmark analysis we use a standard risk factor approach to formalize the impact

of liquidity on corporate bond prices, following Pastor and Stambaugh (2003) who use

this approach to study liquidity risk effects in equity markets. We regress the time series

of corporate bond excess returns rit on a set of risk factor innovations Ft (not necessarily

returns)

rit = β0i + β′
iFt + ϵit. (1)

Our forward-looking estimate of the expected excess returns Ê(rit), as constructed from

credit spreads corrected for expected default losses (see Section 4.4), is then regressed
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on the betas and the expected transaction costs

Ê(rit) = λ′βi + ζE(cit) + αi, (2)

where cit denotes the transaction costs (relative to the asset price) and αi denotes the

error term of the cross-sectional regression, which can be interpreted as the pricing error

of asset i. The theory predicts that the intercept in this regression is zero since we

focus on excess returns. The coefficients λ measure the market prices of factor risk,

and ζ measures the impact of transaction costs and can, under some assumptions, be

interpreted as the turnover rate of the asset (Amihud and Mendelson (1986)). The risk

factors we include are the equity market return, innovations in corporate bond market

liquidity and equity market liquidity, and innovations in the VIX index. As a robustness

check, we apply the liquidity asset pricing approach of Acharya and Pedersen (2005) in

Section 6.7.

Note that this risk-factor approach can be used to study the credit spread puzzle,

as long as we do not use the corporate bond market return as risk factor to avoid that

the puzzle is present on both the left-hand side and right-hand side of the equation. We

therefore explain the expected corporate bond returns from equity market and volatility

risk exposure and liquidity effects.
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4 Measuring bond returns and liquidity

4.1 Portfolio selection

For our analysis we use individual bond transaction data from the TRACE database.3

From July 2002 onwards the NASD discloses all corporate bond trades that all its

affiliated traders are required to report. Initially only trades in a limited number of

bonds were disclosed, but gradually disclosure expanded to reach full disclosure from

October 2004 on. We thus download all trade data from TRACE from October 2004 up

to end of December 2008 so that we have a sample with homogeneous coverage. After

applying several data filters (see Appendix A for details) we end up with approximately

4.4 million bond trades. For each bond we calculate a yield and a credit spread by

comparing the bond yield with a duration-based weighted average of the yield on two

treasuries with bracketing duration.

As is usual in the asset pricing literature, we fit the model to different test portfolios

rather than to individual assets. To this end, we form portfolios which are sorted first on

credit quality and thereafter on liquidity. To increase the number of test assets, we sort in

each dimension using different variables. To conduct the credit quality sorts, we use the

S&P credit rating at the end of the previous quarter (AAA, AA, A, BBB, BB, B, CCC)

or the cumulative default probability over the life of the bond estimated by Moody’s-

KMV EDFs (quintile portfolios). For the liquidity dimension, we sort by amount issued,

bond age, and number of trades in the previous quarter. Amount issued and age have

been shown to be good proxies for liquidity by Houweling, Mentink and Vorst (2005),

while typically the number of trades will be higher for more liquid securities. In the

liquidity dimension, we categorize a bond as either liquid or illiquid. The cutoff point

3A good description of the TRACE data can be found in Lin, Wang and Wu (2010).
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for amount issued and age is the median, whereas for the trade count it is the 70%

percentile. This proportion is required to ensure that there are enough trades in the low

activity portfolio. The AAA and CCC rated portfolios contain too few observations to

conduct a double sort, but are included as rating portfolios. This yields 62 portfolios

consisting of almost 15,000 different bonds. These portfolios form the basis of our tests.

4.2 The Roll model for bond returns

Estimating returns and transaction costs from the TRACE data is not trivial. The data

contain a record of transaction prices and trade volume, but no quote or bid-ask spread

information. The data also do not indicate whether the transaction was a buy or a sell.

The data are also irregularly spaced: some bonds trade several times a day, but many

bonds trade very infrequently. To deal with these issues, we use the basic Roll (1984)

model suggested by Hasbrouck (2009) as the basis of our analysis, and adapt it to a

setting where we form portfolios of bonds. We start by modeling the credit spread of

bond i at time t, denoted CSit as

CSit = mit + citqit, (3)

where mit is the efficient credit spread level and qit is an i.i.d. trade indicator that can

take values +1 and −1 with equal probability. The coefficient cit is the effective bid-ask

half-spread in yield terms (effective transaction costs). We focus on credit spreads rather

than prices to take out most of the effects of interest-rate risk and implicit weighting

induced by maturity differences.

Following Hasbrouck (2009), we write this model in first difference form

CSit − CSi,t−1 = ∆mit + citqit − ci,t−1qi,t−1, (4)
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where ∆mit is the innovation in the efficient credit spread. We model the change in this

efficient credit spread as the sum of an element common to the portfolio to which bond

i is allocated, and an idiosyncratic component

∆mit = zit∆Mt + uitvt, (5)

where ∆Mt ∼ N(0, σ2
M) represents the portfolio-level spread change, uit ∼ N(0, σ2

u) the

idiosyncratic shock with vt an observable scale factor that captures heteroskedasticity.

This is important as the volatility of idiosyncratic shocks may change over time. Em-

pirically we use the level of the VIX index for vt. We let the loading on the common

factor ∆M be dependent on the bond duration with

zi,tik = 1 + γ(Durationik −Duration), (6)

where γ is estimated in a first step, Durationik is the duration of bond i at trade k, and

Duration is the average duration of all bonds in the portfolio.4 This factor zit captures

patterns in the term structure of volatilities. For example, if long-term credit spreads are

less volatile than short-term credit spreads, one would expect a negative γ. The latent

components ∆M and u are independent. Furthermore, we assume that the transaction

costs are the same for all bonds in the same portfolio, cit = ct.

In our analysis, we use hourly time intervals, but not every bond trades each hour

and we therefore use a repeat sales methodology (see, for example, Case and Shiller

(1987)). Let tik denote the time of the k’th trade in bond i. Taking differences with

respect to the previous trade of bond i, these assumptions lead to the complete model

4Specifically, γ is estimated by using a repeat sales methodology to estimate a restricted version of
equation (7) with the transaction costs c set to zero.
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for all data in the same portfolio,

CSi,tik − CSi,ti,k−1
=

tik∑
s=ti,k−1+1

zis∆Ms + ctikqi,tik − cti,k−1
qi,ti,k−1

+ eit, (7)

where eit =
∑tik

s=ti,k−1+1 uisvs. We estimate the components of equation (7) using a

Bayesian approach and the Gibbs sampler, following Hasbrouck (2009). For each port-

folio, this approach gives us posterior distributions for the time series of the common

credit-spread factor ∆M, the transaction costs c, and the posterior probabilities of the

trade indicators q. The identification assumptions of the model imply that the values of

the transaction costs c are always positive. Appendix B details this estimation method

in full detail.

In the actual estimation, we assume the transaction costs to be constant within every

week, and estimate credit spread changes ∆M for every hour. We transform these credit

spread changes to returns r by multiplying these changes with (minus) the duration of

the bond portfolio. This gives (to first order) the return on the corporate bond portfolio

in excess of the government bond return. Similarly, the transaction costs in terms of

yields are transformed to price-based transaction costs by multiplying the costs c by the

bond duration.5.

These returns are then aggregated to weekly returns, so finally the Roll model pro-

duces a time series of weekly portfolio excess returns and transaction costs. In the

equations above we suppressed the subscript of each portfolio j. In the remainder of the

paper, the subscript j refers to portfolio j.

5See Bongaerts, de Jong and Driessen (2011) for a derivation of the relation between yield-based
and price-based transaction costs.
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4.3 Validation of the liquidity estimates

As of November 2008, the TRACE data do contain the trade indicators qit: for each

transaction it is recorded whether this was buyer-initiated or seller-initiated. This allows

us to do a strong check on the estimation of the Roll model describe above. We thus

estimate the transaction costs in equation (7) in two ways. First, we use the Gibbs

sampler, where we do not use information on the trade indicators (“indirect” approach).

Second, we use the observed trade indicators in which case (7) can directly be estimated

using a repeat-sales regression approach (“direct” approach).

We perform this analysis on the portfolios where we first sorts on rating or EDF,

and then on amount issued. We calculate the correlation between the weekly series of

transaction costs, estimated using either the direct or indirect approach, using data until

end of 2009. We find that the average of these time-series correlations equals 78%, and

the correlations range between 63% and 97% across portfolios (except for one portfolio

which has correlation of -4.5%, but this portfolio has relatively few bond issues). Also,

the average level of the direct and indirect transaction costs is very similar: 1.35%

(direct) versus 1.32% (indirect) on average. This shows that, even though we do not

observe the trade indicators in 2005 to 2008, it is possible to reliably estimate transaction

costs on corporate bonds using the Gibbs sampling method.6

4.4 Time series model for liquidity

The betas in the asset pricing model are defined as the ratio of conditional covariances

and variances, that is, the (co)variances of the innovations in returns and costs. We

assume that returns have no serial correlation and we take the residuals of an autore-

6We do not use 2009 data for our asset pricing tests since we do not have EDF data for this period.

15



gressive AR(2) model as the liquidity innovations7

cj,t = b0j + b1jcj,t−1 + b2jcj,t−2 + εj,t, (8)

where cj,t now denotes the portfolio-level transaction costs. We also estimate the market-

wide transaction costs by averaging costs across portfolios. We use the innovations in

these market-wide costs as liquidity risk factor in our asset pricing model.

We also analyze the effects of exposure to equity market liquidity and the VIX

volatility index. Following Acharya and Pedersen (2005), we construct this measure

by taking AR(2)-innovations to the equally-weighted mean of Amihud’s (2002) ILLIQ

measure across all stocks in CRSP. Innovations in the VIX are also constructed using

an AR(2) model.

4.5 Expected return estimates

To estimate the expected excess return E(rj) on a corporate bond portfolio j, we take

the observed credit spread and correct it for expected default losses. This procedure

follows de Jong and Driessen (2006), Campello, Chen and Zhang (2008), and Bongaerts,

de Jong and Driessen (2011), who show that it yields much more accurate estimates of

expected returns than simple averaging of historical excess returns.

The method works as follows. Consider bond i, and denote the cumulative default

probability over the entire maturity of the bond πit, the loss given default L, the yield

on the bond yit and the corresponding government bond yield ygt. We approximate the

coupon-paying bond by a zero-coupon bond with maturity equal to the duration of the

coupon-paying bond, Tit. Assuming that default losses are incurred at maturity, the

7We have checked that residuals from the AR(2) series do not contain significant autocorrelation.
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expected return of holding the bond to maturity equals (1 + yit)
Tit(1−L · πit). We then

annualize this number and subtract the annualized expected return on the corresponding

government bond to obtain our expected excess return estimate

Et(ri) = (1 + yit)(1− L · πit)
1/Tit − (1 + ygt). (9)

Note that this gives an estimate of the bond-level expected return at each point in time

t. The expected excess portfolio return is then constructed each week by averaging the

expected excess bond returns over all trades in the portfolio in that week that have an

EDF available. The unconditional expected return for a portfolio Ê(rit) is given by the

time-series average across weeks.

The loss given default L is assumed to be 60%. Default probability estimates πit,

needed to construct these expected excess returns, are obtained from Moody’s-KMV

EDF database. We have data on the average 1-year and 5-year annualized expected

default frequencies (EDFs), which capture the conditional default rate in the first and

fifth year, respectively. We construct the conditional expected default frequency for every

bond as the duration weighted average of the one-year and five-year EDFs. For durations

longer than 5 years, we assume that the conditional default rate is flat beyond 5 years.

From these bond-specific EDFs we obtain the expected cumulative default probabilities

over the entire maturity of the bond (πit). We prefer using Moody’s-KMV EDFs over

rating-based default probability estimates because we observe a strong increase in the

EDFs in the last two years of the sample (2007 and 2008). It is not obvious how to adjust

for these new market circumstances when using rating-based default probabilities.
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5 Empirical results

5.1 Correlations, expected returns, transaction costs and betas

We first check the time-series correlations between the four factors in our benchmark

model: corporate bond liquidity shocks (CBLIQ), equity market liquidity shocks (EQLIQ),

equity market (S&P 500) returns (EQ), and VIX innovations (VIX). Panel A of Table

1 shows that only the VIX and equity market returns exhibit very strong (negative)

correlation (the so-called “leverage” effect). Liquidity shocks across bond and equity

markets have a correlation of 36%. Hence, there is some commonality in liquidity across

markets, but most of the liquidity variation is market-specific.

Panel B of Table 1 presents averages of expected returns, costs, betas, and associated

t-stats across portfolios and over the full 2005-2008 sample period. The first key result

in Panel B is that the estimated one-way transaction costs are substantial, on average

0.83% across portfolios and over time. These numbers are very similar to those of Bao,

Pan and Wang (2010) who use a different method to estimate Roll’s model for corporate

bonds. They report a median bid-ask spread of 1.50%, implying one-way transaction

costs of 0.75%, close to our estimates. As noted by Bao, Pan and Wang (2010), these

estimated costs are higher than quoted bid-ask spreads as found in Bloomberg, and they

argue that the Roll model thus captures liquidity effects that go beyond the quoted

bid-ask spread. The second result in Panel B of Table 1 is that we find large positive

expected returns (in excess of government bonds), around 1.9% per year on average, in

line with earlier evidence on the credit spread puzzle. Note that this is an average of the

weekly expected return estimate since we construct the forward-looking expected return

measure each week. The Newey-West corrected t-statistics on these average expected

return estimates are high (average t-stat of 4.8), which shows the usefulness of estimating
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expected returns from credit spread levels.

The time series of market-wide average transaction costs is shown in Figure 1

(along with an alternative liquidity series based on Feldhütter (2011) and Dick-Nielsen,

Feldhütter and Lando (2011), to be discussed in Section 6). Clearly, liquidity peaks

during events in the credit crisis, such as the March 2008 Bear Sterns failure and the

September 2008 Lehman collapse. Bao, Pan and Wang (2010) report similar illiquidity

spikes in 2008.

Next we turn to the betas. Following equation (1), Panel B of Table 1 also reports

results of univariate and multivariate regressions of bond returns on the four factors

(CBLIQ, EQLIQ, EQ, and VIX). We scale all factors such that they have the same

standard deviation as equity returns, so that one can easily compare the betas across

factors. Also, we use overlapping four-weekly returns and innovations to estimate betas.

We see that corporate bonds have significant equity market exposure, which by itself

explains on average 50% of the time-series variation. Equity market liquidity risk and

volatility risk have similar explanatory power. We also see that corporate bond returns

have significant negative exposure to systematic bond liquidity shocks, measured by

innovations in the market-wide level of corporate bond transaction costs. This exposure

explains alone on average about 26% of the time-series return variation. When we

look at the multivariate betas, we see that the equity and volatility betas both become

substantially smaller, which is due to the strong negative correlation between equity

returns and volatility shocks (the “leverage effect”). The average time-series R2 for this

multivariate regression is 65%.

It is important to note that all these betas are estimated with quite high precision. In

particular, the corporate bond liquidity betas have an average t-stat of −8.6 (univariate)

and −4.0 (multivariate). To put this in perspective, the average t-stat of the estimate
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for expected liquidity, E(cj), is equal to 6.2. Hence, estimation error is of similar size

for expected liquidity and liquidity betas.

Finally, Panel B (Table 1) reports the returns, costs and betas of high-liquidity and

low-liquidity portfolios. Recall that our portfolios are first sorted on rating or EDF,

and then on one of the three liquidity proxies, bond age, amount issued and volume.

For each rating level or EDF quintile, we thus have a high-liquidity and low-liquidity

portfolio for each liquidity proxy (except for the AAA and CCC ratings). We then report

averages across all rating-based and EDF-based portfolios and across the three liquidity

proxies. We see that low-liquidity portfolios have higher expected returns and higher

estimated transaction costs, suggesting an effect of transaction costs on expected returns.

In contrast, there is little difference in equity or volatility betas, which shows that, once

we sort on rating or EDF, the liquidity sort is indeed capturing liquidity effects and not

differences in market or volatility risk exposure. We also see that the liquidity betas of

the low-liquidity portfolios are closer to zero than those of the high-liquidity portfolios.

There is substantial variation in corporate bond liquidity betas across portfolios however:

the bond market liquidity exposures range from −0.56 to about −0.11 (or −0.50 to 0.11

for the multivariate betas) across portfolios (non-tabulated). Keeping in mind that we

scale the liquidity factor to have the same volatility as the equity return, this variation

in liquidity betas is substantial and is expected to be informative about the presence of

a liquidity risk premium.

5.2 Benchmark asset pricing results

In this subsection we focus on the cross-sectional asset pricing results with the betas of

the four factors (CBLIQ, EQLIQ, EQ, and VIX) as determinants of expected returns,

in addition to the average transaction costs as portfolio characteristic (equations (1)
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and (2)). Specifically, we run a cross-sectional regression of the average expected ex-

cess returns on the estimated risk factor exposures and the average transaction costs.

The averages and the betas are estimated over the full sample period 2005-2008. As

the betas and the expected costs contain estimation noise, the standard errors of the

regression are calculated using an extension of the method by Shanken (1992).8 Notice

that the regressions do not contain an intercept, which is consistent with the model in

equation (2).

We first check whether there are any multicollinearity issues for the cross-sectional

regression. Panel C of Table 1 presents cross-sectional correlations of the various be-

tas that enter the cross-sectional regression, along with the expected liquidity of each

portfolio. Not surprisingly, the highest correlation is between equity and volatility betas

(67%). Interestingly, the equity liquidity and corporate bond liquidity betas are nega-

tively correlated. This shows that equity liquidity and corporate bond liquidity generate

quite different beta patterns.

5.2.1 Cross-sectional pricing regressions: Univariate

Table 2 presents the main results from the cross-sectional asset pricing regressions. We

first present univariate regressions in specifications (1) to (5). We see that the expected

cost has a positive and significant coefficient (specification (1)), and explains about 17%

of the cross-sectional variation. The CBLIQ beta has a negative coefficient (specification

(2)). Given the negative liquidity betas, the product of the liquidity beta and liquidity

coefficient is positive. Hence we find a positive corporate bond liquidity premium when

we do not include any other variables, although it has low cross-sectional explanatory

power as it has a negative cross-sectional R2. This implies that the model with priced

8The Internet Appendix of Bongaerts, de Jong and Driessen (2011) provides more details on the
procedure.
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corporate bond liquidity risk explains less of the expected return variation than a model

with a constant term only.

Specifications (3) to (5) show that equity liquidity betas, equity betas, and volatility

betas are all important determinants of expected corporate bond returns. Recall that we

scaled all factors to have the same standard deviation. This allows for a straightforward

comparison of the betas. Since Table 1 shows that these betas are quite comparable in

size, the risk premium coefficients λ can also be compared directly. Table 2 then shows

that the premia for equity risk, equity liquidity risk, and volatility risk are of similar

size.

Note that most coefficients in the cross-sectional regression have quite high t-statistics.

This is a direct consequence of the use of forward-looking expected returns as left-hand-

side variables. These are estimated much more precisely than realized average returns.

5.2.2 Cross-sectional pricing regressions: Multivariate

Next we turn to the multivariate regressions to see whether corporate bond expected

returns are affected by both expected transaction costs and liquidity risk premia (Table 2,

specifications (6) to (11)). The first key result is that the expected liquidity effect remains

significant and positive across all specifications. In contrast, as soon as we both include

expected liquidity and corporate bond liquidity risk, the corporate bond liquidity risk

coefficient becomes positive and mostly insignificant. This implies a counter-intuitive

negative liquidity risk premium. The economic size of this corporate bond liquidity risk

premium is negligible however. For example, when we add corporate bond liquidity

risk to the model with equity risk only, the cross-sectional R2 increases by 0.1% (47.2%

versus 47.3%).

In contrast, the effect of expected liquidity is economically large even when we control
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for corporate bond liquidity risk and equity risk (specification (7)): adding expected

liquidity increases the R2 from 47.3% to 65.1%. The coefficient on expected liquidity

can be related to the trading frequency of bonds under some assumptions (Amihud and

Mendelson (1986)). The coefficient of 1.172 in specification (7) corresponds to a turnover

frequency of about 10 months.9

While there is no evidence for a substantial corporate bond liquidity risk premium,

we do find robust evidence that equity market illiquidity shocks are priced (see the

multivariate regression specifications (8)–(11)). This finding adds to the evidence that

equity market liquidity risk is priced in various markets, such as private equity (Franzoni,

Novak, and Phalippou (2011)) and hedge funds (Sadka (2009)). We also find that equity

volatility shocks are priced. Note that the firm-value approach of Merton (1974) directly

implies that volatility exposure should affect corporate bond expected returns if there

is a volatility risk premium. Such a volatility risk premium has been found in the cross-

section of stock returns (see Ang, Hodrick, Xing and Zhang (2006)) and for index options

(see e.g. Bollerslev, Tauchen and Zhou (2009)).

The effect of expected liquidity remains positive and significant across these specifi-

cations. In contrast, the bond liquidity risk premium continues to have the “wrong” sign

and is economically small. Finally, note that the estimated equity premium is always

significantly positive and reasonable in size (between 2% and 5.3% per year).

In Section 6 we present a wide range of robustness checks on the asset pricing

results presented here. Across all these robustness checks, we continue to find that

both expected liquidity and equity market liquidity risk affect corporate bond expected

returns, while exposure to corporate bond liquidity risk has an economically negligible

9Note that this should not be interpreted as the equally-weighted average turnover across bonds.
Since we use transaction data, bonds that trade more often have a higher weight in our sample. Hence,
the expected liquidity coefficient captures a trade-frequency weighted average of turnover across bonds.
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effect.

5.2.3 Fit of expected returns and the credit-spread puzzle

Figure 2 graphs the fitted values of the risk premium according to specification (11), for

the portfolios sorted on rating and liquidity proxies (Panel A) and for the sorts on EDFs

and liquidity (Panel B). The graphs present the average across the three liquidity proxies

per rating/EDF category and show that the expected liquidity premium, together with

risk premia for equity, volatility and equity liquidity risk, explains most of the observed

credit spreads, with a negligible effect of corporate bond liquidity risk.

These results shed light on the credit spread puzzle. Huang and Huang (2003) show

that structural models of default risk generate credit spreads well below observed credit

spread levels. We find similar results using our asset pricing approach. Equity market

and volatility risk exposure explain only a part of the level of expected bond returns.

In particular, equity and volatility betas of high-rated bonds are very low, so that only

with extremely high equity and volatility risk premia it would be possible to explain

the relatively high expected returns on these bonds. However, such high market risk

premia would (i) be inconsistent with risk premia observed in for example equity markets,

and (ii) imply too high expected returns on lower-rated bonds, given that these bonds

have high exposure to market and volatility risk. Incorporating liquidity effects, mainly

expected liquidity and equity market liquidity risk, resolves this puzzle. As shown in

Figure 2, a substantial part of the expected return of high-rated bonds is due to these

liquidity effects. The model provides a very good fit of expected bond returns across

all portfolios, and does not underestimate the expected return on high-rated bonds. In

fact, for high-rated bonds the model predicts expected returns that are slightly higher

than the observed average returns. Figure 2 also shows that the economic size of the
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corporate bond liquidity risk premium is very small across all portfolios.

5.3 Why is corporate bond liquidity risk not priced?

Our results show that expected liquidity and equity market liquidity risk have a strong

effect on corporate bond prices, while corporate bond liquidity risk exposure does not.

To understand these empirical findings, first note that U.S. equities are typically much

more liquid than U.S. corporate bonds.10 Then consider an investor holding both liq-

uid assets (U.S. equities) and illiquid assets (U.S. corporate bonds). There are various

reasons why investors trade these assets over time, such as rebalancing, risk-shifting,

satisfying regulatory capital requirements, exogenous liquidity needs, etc. In the pres-

ence of transaction costs, the investor then faces a trade-off between having an optimally

diversified portfolio and minimizing trading costs, see for example Constantinides (1986).

In Appendix C we formalize such a setup using a simple two-period asset pricing

model. In this model, a mean-variance investor can invest in two assets, a low-cost

asset and high-cost asset. After one period, the investor is forced to liquidate part of

his portfolio due to an exogenous liquidity shock. If the difference between transaction

costs of the two assets is sufficiently high, it is optimal for the investor to absorb the

liquidity shock by selling only low-cost assets and avoid trading in the high-cost asset. In

equilibrium, this implies that the risk of shocks to the liquidity of the high-cost asset is

not priced. Only exposure to the liquidity risk of the low-cost asset is priced. Applying

this result to our setting, it would imply that corporate bond liquidity risk is not priced,

which is in line with our empirical findings, while exposure to equity market liquidity

10Hasbrouck (2009) has estimated transaction costs for U.S. equities using Roll’s measure. Using his
data, we find that for the S&P 500 stocks the average cost is 0.15% in 2005-2007, and 0.32% in 2008.
In contrast, Figure 1 reports market-wide corporate bond transaction costs between 0.5% and 1% in
2005-2007 and around 2.5% in 2008. Even for the most liquid corporate bond portfolio costs are around
0.4% before the crisis and between 1% and 3% during the crisis.
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risk should be priced. This is also in line with our empirical findings: in Table 2 we

find that exposure to equity market illiquidity has a significant risk premium with the

expected sign. Alternatively, if the difference between transaction costs of the two assets

is sufficiently small, our simple model predicts that both assets are used to absorb the

liquidity shock, although the low-cost asset is still used relatively more. In this case,

shocks to transaction costs of both assets are priced.

This simple model can be used to generate some additional testable hypotheses.

First, the model predicts higher turnover for the low-cost asset. Second, the pricing of

liquidity and the turnover levels may be different in normal times versus crisis periods.

To see this, consider the case where, in normal times, transaction costs on both assets are

sufficiently small so that both assets will be used for trading. In this case, liquidity risk

on both the low-cost asset (equity) and high-cost asset (corporate bonds in our case)

is priced. However, in normal times the variation in transaction costs is quite small

(see Figure 1) and hence the effect of liquidity risk on prices may be negligible. Next,

consider a crisis period during which transaction costs on the high-cost asset increase

substantially so that in equilibrium this asset will not be used to absorb liquidity shocks.

The model then predicts that trading in the liquid asset actually increases when moving

from normal times to crisis periods, while trading in the illiquid asset decreases.

To support these claims, we study turnover patterns in equity and corporate bond

markets. We test two implications. First, turnover in liquid markets should be higher

than turnover in illiquid markets. Second, as markets become less liquid and/or prices

go down, turnover in the illiquid market decreases, while turnover in the liquid market

increases.

For our 2005-2008 sample period we calculate monthly turnover for each stock in

the CRSP database and each bond in our TRACE sample, by dividing monthly dollar
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trading volume by the dollar value of the market capitalization (or amount issued in

bond markets). We first focus on the value-weighted average turnover levels in both

markets. We indeed find that equity market turnover is much higher than corporate

bond turnover. For stocks, the value-weighted average turnover level equals 68.3% per

quarter, while for corporate bonds the corresponding number is 6.6% per quarter.

Subsequently, we study the dynamics of turnover. Figure 3 graphs the time series

of the value-weighted mean and the median turnover across stocks and bonds, respec-

tively. We see that, as the crisis unfolds, equity turnover increases while corporate bond

turnover goes down. To analyze these time series in more detail, we perform two sets

of regressions. First, we regress monthly changes in the value-weighted average equity

turnover on the equity market return and the change in Amihud’s (2002) ILLIQ mea-

sure. This ILLIQ measure is calculated for each stock, and we then use the change in

the value-weighted average ILLIQ across stocks as regressor. Results in Table 3 show

that a decrease in liquidity or decrease in the stock market index level imply an increase

in equity market turnover. Both effects are significant in these univariate regressions.

Given that the change in ILLIQ and the equity market return are strongly negatively

correlated, a multivariate regression suffers from multicollinearity issues, as shown in

Table 3. These results show that equity market turnover increases in bad, illiquid times.

As discussed above, this may be because investors are essentially forced to trade despite

the higher transaction costs.

The second regression focuses on corporate bond turnover. In this case, we perform

a panel regression of the monthly change in individual bond turnover on the change in

the market-wide level of corporate bond transaction costs, as constructed in this paper,

and the change in the average credit spread across all bonds. The results in Table 4

show that corporate bond turnover decreases when the market becomes less liquid and

when credit spreads increase. We also investigate a flight to quality effect. We analyze
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this by interacting the liquidity and credit spread variables with a dummy that equals

one when a bond is rated AAA or AA. The results of the turnover regression in Table 4

show that the turnover decrease in bad times is indeed larger for low-rated (and hence

less liquid) corporate bonds.

In sum, these results shows that stocks have much higher turnover than corporate

bonds, and that this difference is larger when prices go down and when markets are

overall less liquid. Hence, in line with our hypothesis, when transaction costs increase

investors prefer to trade the relatively more liquid assets and avoid trading in less liquid

assets.

6 Robustness checks

In this section we present a wide range of robustness checks on the empirical findings

presented in Section 5.

6.1 Sorting on liquidity betas

The results above indicate that the effect of corporate bond liquidity risk on corporate

bond prices is economically small. However, this finding may be caused by a lack of

cross-sectional variation in liquidity betas making estimation of a risk premium difficult.

Therefore, similar to Pastor and Stambaugh (2003) we now construct test portfolios that

are also sorted on corporate bond liquidity betas. This requires liquidity beta estimates

at the individual bond level. The challenge here is that many bonds do not trade very

frequently and estimation of individual betas for these assets is problematic. Moreover,

beta estimates for individual instruments can be rather unstable and sensitive to outliers.
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To deal with these issues, we use a Bayesian approach. Our liquidity beta for each

bond is calculated as a weighted average of the direct regression estimate (obtained by

regressing individual bond returns on the liquidity factor) and a portfolio-based beta.

This portfolio beta is obtained by using the liquidity beta of the portfolios to which

the bond was assigned in the analysis above. The liquidity beta of these portfolios is

our “best guess” (or, in Bayesian terms, “prior”) of the true liquidity beta of the bond

in case insufficient trading data for this bond is available. The more precisely we can

estimate the individual bond liquidity beta from transaction data, the less weight we

want to give to these portfolio betas. This is exactly what our Bayesian solution achieves.

Appendix D provides details of the procedure.

Table 5 shows the cross-sectional results when we add these liquidity-beta portfolios

to our cross-section of portfolios. Comparing these results with the benchmark results,

we see that adding liquidity-beta portfolios hardly affects the estimates for the risk

premia and expected liquidity. In particular, the liquidity risk premium still has the

“wrong” sign and its economic impact remains very small. Even when we only use the

liquidity-beta portfolios for the cross-sectional estimation, we find a small coefficient

with the “wrong” sign for the liquidity risk premium (non-tabulated).

6.2 Other liquidity measures

Liquidity has many dimensions, and therefore we check whether our results our robust

to the use of different liquidity measures. First, we consider an alternative measure of

corporate bond market liquidity risk. Feldhütter (2011) and Dick-Nielsen, Feldhütter,

and Lando (2011) propose to measure the bid-ask spread using imputed roundtrip trades

(IRT). The idea of this measure is to find trades of the same size in a given bond within

a given time interval. In many cases, these trades represent a dealer acting as market
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maker, who buys from and sells to end users and collects a bid-ask spread as fee. For

each bond, we thus take the difference between the highest price and the lowest price

of trades with the same trade size on a given day as an estimate of the bid-ask spread.

We obtain an aggregate measure by averaging this bid-ask spread across all bonds, and

in Figure 1 we compare this IRT measure with the Roll measure used in the benchmark

analysis. Clearly, both measures are highly correlated. Hence, two very different liquidity

measures generate very similar liquidity factors.

We then estimate the asset pricing model using the IRT-based liquidity factor, using

an AR(2) model to model shocks to this liquidity measure. Table 5 shows that the

results are extremely close to the benchmark results.

We also use an alternative equity market liquidity measure, replacing Amihud’s

ILLIQ measure by the measure used by Pastor and Stambaugh (PS, 2003).11 Table 5

shows that this hardly affects the results. In particular, the corporate bond liquidity

risk premium continues to have the “wrong” sign, and its economic significance remains

small.

6.3 Credit risk as a portfolio characteristic

Our analysis focuses on explaining expected excess corporate bond returns. As discussed

above, these expected returns are constructed by correcting credit spreads for expected

default losses. Still, even though we control for expected default losses, it is possible

that the liquidity effects pick up some missing credit risk effects.12 To analyze this,

we add the Moody’s-KMV default probability estimates as a portfolio characteristic to

11We construct the PS measure for each stock on each day in our sample using a rolling window of 22
trading days, and take an equally weighted average. We then estimate an AR(2) model for this average
at the weekly frequency to obtain liquidity shocks.

12He and Xiong (2010) propose a theoretical model in which rollover risk generates an endogenous
relation between liquidity and credit risk.
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the second-step cross-sectional regression. This variable is constructed by averaging the

default probability estimates over time and across all firms in a given portfolio. Table 5

shows that, even though the default probability variable is significant, its presence does

not change the results on liquidity and liquidity risk.

6.4 Pre-crisis sample

Market liquidity deteriorates quickly after the Lehman default in September 2008. Hence,

it is interesting to see to what extent our results are driven by the large liquidity shocks

during this crisis period. We therefore rerun the asset pricing regressions using a pre-

crisis sample, using data up to August 2008. We first check whether the first-step

liquidity betas are still significant, since it may be that the strong significance of these

betas in the full sample (as reported in Table 1) was purely driven by the crisis period.

We find that this is not the case: using the pre-crisis sample, the corporate bond liquidity

betas have average t-statistics of −7.5 (univariate) and −5.7 (multivariate), very similar

to the full-sample results. Table 5 shows the results of the cross-sectional regression for

the pre-crisis sample. Again, we obtain very similar results. In this case, the corporate

bond liquidity risk premium does have the “correct” sign, but it is both statistically and

economically insignificant.

6.5 Intercept in the pricing model

So far, we have not included a constant term in second-step regression for the asset pric-

ing model, since the model predicts a zero constant term. Hence, a simple specification

test is to add an intercept to the second-step regression and see whether it is significant.

Table 5 shows that this is not the case. The intercept is equal to -0.012% (in annual

terms), and highly insignificant with a t-stat of -0.05. Also, the coefficients for expected
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liquidity and the risk premia are essentially unchanged when adding an intercept.

6.6 Time variation in betas and premia

Next we analyze whether there is any variation in the betas and risk premia over our

sample period. Our forward-looking measures of expected returns and transaction cost

estimates are available on a weekly basis. However, the right-hand-side betas cannot be

calculated with only one week of data. Therefore, we use a two-sided kernel to estimate

the beta at each point in time. The kernel function gives higher weight to observations

close to the measurement date (see Ang and Kristensen (2009) for more details) and is

two-sided, thus using observations before and after the measurement date. For simplicity,

we use a “tent shaped” kernel function, with linearly decreasing weights for observations

further away from the measurement date, and zero weights for observations that are

more than 52 weeks away.13 The second-step equations are then estimated using four-

week rolling windows. Of course, our sample period is short and hence it is difficult

to precisely assess the time variation in betas and risk premia. Therefore, this analysis

should be considered as explorative.

Figure 4 graphs the results for the model including the equity, equity liquidity and

corporate bond liquidity betas, and expected costs.14 The left-hand panels of Figure

4 show the estimated betas and transaction costs. For each week, the graphs show

the cross-sectional average over all portfolios. We see that equity betas increase from

the start of the financial crisis in mid-2007. The transaction costs also increase from

that period onwards, and increase very substantially around the Lehman collapse in

September 2008. The middle panels show the estimated coefficients from the weekly

13For dates close to the start or end date of the sample a truncated tent shape is used.
14To keep the graphs readable, we exclude the volatility premium because it is highly correlated with

the equity premium. Results are very similar when we include volatility risk.
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second step regressions. The coefficient for expected liquidity is remarkably stable over

time, while the liquidity premia are less stable. The right-hand panels show the implied

risk premia (top-right panel), and the expected liquidity premium (bottom-right panel),

obtained by multiplying the betas with the estimated coefficients from the second step

regressions. These graphs clearly show an increase in the equity risk premium from

mid-2007. The corporate bond liquidity risk premium is close to zero and unstable,

though. The expected liquidity premium increases from about 60 basis points to around

2.5 percent for the average portfolio.

The average of the weekly estimates are reported in Table 5 (now including the

volatility risk factor).15 The average estimated equity premium is around 5.4 percent,

while the equity liquidity risk premium is a bit smaller than in the full sample, perhaps

due to larger estimation error for the kernel-based betas. The corporate bond liquid-

ity risk premium has the correct sign, but its effect is again economically small. The

estimated coefficient for expected liquidity is in the same order of magnitude as in the

full sample estimates. In sum, this explorative time-varying analysis supports our main

finding that expected liquidity has a strong effect on bond prices, while the effect of

corporate bond liquidity risk is small.

6.7 Liquidity-CAPM approach

In the analysis above we focused on one liquidity risk exposure, the covariance between

portfolio returns and market-wide liquidity shocks. However, the liquidity CAPM of

Acharya and Pedersen (AP, 2005) suggests that other liquidity risk covariances may

also matter. We therefore now focus on the implications of the AP model, which implies

15Calculating standard errors that incorporate the Shanken (1996) correction is not trivial in this
setting since we use four-week windows for expected returns and costs, and 52-week windows to get
betas.
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that

E(rit) = ζE(cit) + ϕ
Cov(rit − cit, rmt − cmt)

V ar(rmt − cmt)
, (10)

where rmt−cmt is the average (value weighted) net return on the corporate bond market.

One possible approach would be to use this AP model for the corporate bond market,

in isolation from other markets. This is not very realistic as corporate bond returns are

known to be strongly correlated with equity returns and also with volatility changes.

Bongaerts, de Jong and Driessen (BDD, 2011) build a formal model of liquidity and

liquidity risk pricing in markets with hedging pressure and (potentially) short selling,

where asset returns can be partly hedged by other (so-called benchmark) assets. In the

absence of short-selling, the equilibrium pricing equation is similar to the AP model, but

the returns and costs are orthogonalized for their covariance with a set of benchmark

assets. Formally, we have

E(r̂it) = ζE(ĉit) + ϕ
Cov(r̂it − ĉit, r̂mt − ĉmt)

V ar(r̂mt − ĉmt)
, (11)

with

r̂it = rit − βr′
i rb,t, βr

i = V ar(rb,t)
−1Cov(rit, rb,t),

and

ĉit = cit − Et−1(cit)− βc′
i rb,t, βc

i = V ar(rb,t)
−1Cov(cit − Et−1(cit), rb,t),

and with rbt the vector with returns on the benchmark assets.16 Similar to AP, we

incorporate that transaction costs are persistent over time by focusing on innovations

cit − Et−1(cit). The ’market’ return and cost factors r̂m and ĉm are value weighted

16This model is simpler than the original BDD model: it assumes there are no non-traded risk factors
that correlate with corporate bond returns.
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averages of the individual returns and costs.17 Empirically, we allow for two benchmark

assets, the equity market index and the VIX index.

The empirical model proceeds in two steps. In the first step, corporate bond excess

returns and corporate bond transaction cost innovations are regressed on a set of bench-

mark assets. This produces estimates of the exposure coefficients βr
i and βc

i . We also

calculate the elements of the last term in equation (11)

βrr
i =

Cov(r̂it, r̂mt)

V ar(r̂mt − ĉmt)
(12)

βrc
i =

Cov(r̂it, ĉmt)

V ar(r̂mt − ĉmt)

βcr
i =

Cov(ĉit, r̂mt)

V ar(r̂mt − ĉmt)

βcc
i =

Cov(ĉit, ĉmt)

V ar(r̂mt − ĉmt)
.

The expected returns then follow from

E(rit)− E(rbt)
′βr

i = ζ(E(cit)− E(rbt)
′βc

i ) + ϕ(βrr
i − βrc

i − βcr
i + βcc

i ). (13)

In practice, we do not know the expected return on the benchmark assets E(rbt) and

treat it as a parameter vector (λ) to be estimated. This model is linear in all parameters

except ζ. However, if we take a preliminary estimate ζ = ζ0 to construct βi = βr
i − ζ0β

c
i ,

the model is linear and can be estimated by OLS. In the empirical work, we set ζ0 = 1.2

(implying a turnover rate of about 10 months), which roughly corresponds to the average

estimate across the specifications in Table 2. Following AP, we also allow each component

of the final covariance term to have a separate impact the expected return. The final

17Another possible approach would be to apply the Acharya-Pedersen model to both the entire equity
market and the corporate bond market. This would assume perfect integration of the two markets, and
require a liquidity factor that combines equity and corporate bond market liquidity.

35



model thus is

Ê(rit) = λ′(βr
i − ζ0β

c
i ) + ζE(cit) + ϕ1β

rr
i + ϕ2β

rc
i + ϕ3β

cr
i + ϕ4β

cc
i + αi. (14)

The residuals αi can again be interpreted as pricing errors.

Table 6 presents summary statistics on the different betas in this model. Most

notably, we see that the different liquidity betas have the expected sign: βrc and βcr

are negative on average: low returns coincide with higher transaction costs. Also, the

average βcc is positive, suggesting the presence of commonality in liquidity.

Turning to the cross-sectional regressions in Table 7, we estimate a variety of speci-

fications for the BDD model in equation (14). All specifications include the equity beta,

volatility beta and the expected transaction costs. In addition, either the ’net’ beta or all

or some of its components (βrr, βrc, βcr, and βcc) are in the regression. The equity beta

and the transaction cost have positive and significant coefficients in every specification,

and the volatility risk premium is significantly negative in all specifications, in line with

the results in Section 5. The magnitudes of the equity risk premium and the transaction

cost premium are fairly stable across specifications. Together, expected liquidity and the

equity and volatility risk premia explain 73% of the cross-sectional variation in expected

returns.

Without additional variables, the estimated equity risk premium is 3.9% per year,

and the expected liquidity coefficient is 0.932. Adding the corporate bond market risk

premium (orthogonalized for the equity risk) in Table 7, specification (2) gives similar

results with exposure to βrr not significant. Hence, once we control for equity market

and volatility risk, exposure to the market-wide corporate bond return does not have

explanatory power.
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Next we add various liquidity risk factors. In specifications (3) and (4), the exposure

of bond returns to corporate bond market transaction costs βrc is added. This factor

is significant and has a counter-intuitive positive sign, implying a negative liquidity risk

premium (as βrc is negative for every portfolio), but the economic effect is small as

the cross-sectional R2 increases only marginally. Even when we add all components of

liquidity risk with separate coefficients in specification (5) the cross-sectional R2 does

not increase substantially, and multicollinearity across the different liquidity betas leads

to “wrongly-signed” coefficients on some of the liquidity betas. When we impose the

restriction that all coefficients on the liquidity betas are the same (βother = −βrc
i −βcr

i +

βcc
i , specification (6)), we again find the “wrong” sign for this liquidity risk premium,

and again the effect is economically small. Finally, when we include the total ’net’ beta

as the regressor in equation (14), βnet
i = βrr

i − βrc
i − βcr

i + βcc
i , this net beta has a

negative but insignificant coefficient (specification (7)). In sum, even when we allow for

various forms of liquidity risk exposure, we do not find that liquidity risk is priced in the

cross-section of corporate bond portfolios. The effect of expected liquidity is remarkably

constant over all specifications, though, with a coefficient around one.

7 Conclusion

This paper explores the asset pricing implications of expected liquidity and liquidity

risk for expected corporate bond returns. We measure corporate bond liquidity using a

Bayesian estimation of Roll’s effective cost model. We then construct liquidity levels and

liquidity innovations for a set of corporate bond portfolios. Several asset pricing models,

including Acharya and Pedersen’s liquidity CAPM, are then estimated using the cross-

section of corporate bond portfolios. Overall, we find a strong effect of expected liquidity

and equity market liquidity risk on expected corporate bond returns, while there is little
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evidence that corporate bond liquidity risk covariances explain expected corporate bond

returns, even during the recent financial crisis. We show that incorporating liquidity

effects goes a long way in explaining the high returns on high-rated corporate bonds

(the “credit spread puzzle”). We also find that equity risk and volatility risk (exposure

to VIX shocks) are priced in the cross-section of corporate bonds. Our findings are

consistent with a setting in which investors strategically choose to use the assets with

low liquidity costs to rebalance their portfolio and satisfy their exogenous liquidity needs.
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A Data filters

We apply several filters to our dataset to remove bonds with special features and to

remove erroneous entries. Our filters are very similar to those employed in Bongaerts,

Cremers and Goetzmann (2010). We remove all trades that include commission, that

have a settlement period of more than 5 days, and all trades that are canceled or reversed.

Trade volumes are truncated by the system and we replace truncated trade volumes by

their respective truncation barrier ($5 million for Investment Grade and $1 million for

High Yield). We remove all trades for which we have a negative reported yield, since

these will be mainly driven by implicit option premia in the yield. We use Bloomberg to

match the trades to bond characteristics and S&P ratings using CUSIPs. We discard all

bonds with convertibility options, that are putable, that have a non-fixed coupon, that

are subordinated, secured or guaranteed. We keep callable bonds because they comprise

a large part of the sample. Removing these callable bonds would substantially reduce

the sample size and the precision of our transaction costs estimates. We discard all

zero-coupon bonds. We also remove trades with a settlement date later than or equal

to the maturity date. Furthermore, we found several duplicate records, resulting from

both parties involved in a trade reporting to the system. We filter out these trades

by consecutively sorting on bond, date and volume and removing identical consecutive

records. Moreover some of the yield changes are unrealistically high. Therefore, we

remove trades with yield changes of more than 1000 basis points (about 0.15% of our

trades). We also exclude all trades with a volume lower than $10,000 since very small

trades may have substantially higher transaction costs. As Ford and GM together were

responsible for more than 10% of all corporate bond trading, we excluded these issuers

to avoid portfolios to be completely driven by individual companies.
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B Gibbs sampler for the Roll model

Estimation of the coefficients of the Roll model is done by means of the Gibbs sampling

method developed by Hasbrouck (2009), combined with the repeat sales methodology.

In the Gibbs sampler, the parameters c and σ2
u and the latent series ∆Mt and r are

simulated step-by-step from their Bayesian posterior distributions. In every step, one

set of parameters or latent variables is simulated, conditional on the values of the other

parameters and latent variables from the previous simulation round. Each step then is

a relatively simple application of Bayesian regression.

Simulating q

The first step in each iteration of the Gibbs sampler is the simulation of the trade

indicators q. In Hasbrouck’s model, these can take only two values, +1 and −1. The

prior is equal probabilities, i.e. Pr[qi,tik = 1] = 1/2. After observing p, the posterior

odds are

Pr[qi,tik = 1]

Pr[qi,tik = −1]
=

f(etik |qi,tik = 1)f(eti,k+1
|qi,tik = 1)

f(etik |qi,tik = −1)f(eti,k+1
|qi,tik = −1)

(15)

where

f(etik |qi,tik = q) = ϕ

(
CSi,tik − CSi,ti,k−1

−
∑tik

s=ti,k−1+1 zi∆Ms − ctikq + cti,k−1
qi,ti,k−1

σ2
u

∑ti,k
s=ti,k−1+1 v

2
s

)
(16)

and

f(eti,k+1
|qi,tik = q) = ϕ

(
CSi,ti,k+1

− CSi,tik −
∑ti,k+1

s=tik+1 zi∆Ms − cti,k+1
qi,ti,k+1

+ ctikq

σ2
u

∑ti,k
s=ti,k−1+1 v

2
s

)
(17)
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From the posterior odds ratio, the posterior probabilities for q = {1,−1} are easily

calculated.

Simulating c

The liquidity cost of a particular week w = ti,k realized in a particular trade k shows up

in two credit-spread equations:

CSi,tik − CSi,ti,k−1
−

tik∑
s=ti,k−1+1

zi∆Ms = ctikqi,tik − cti,k−1
qi,ti,k−1

+ eitik , (18)

CSi,ti,k+1
− CSi,ti,k −

tik+1∑
s=ti,k+1

zi∆Ms = ctik+1
qi,tik+1

− cti,kqi,ti,k + eitik+1
(19)

The posterior mean for cw is found from a linear regression of the two return equations

stacked on top of each other.

Let us first work out equation (18). If both tik and ti,k−1 fall in the same week wik,

the equation is

CSi,tik − CSi,ti,k−1
−

tik∑
s=ti,k−1+1

zi∆Ms = cwik
(qi,tik − qi,ti,k−1

) + eitik (20)

If ti,k−1 happens to be in an earlier week, we write

CSi,tik − CSi,ti,k−1
−

tik∑
s=ti,k−1+1

zi∆Ms + ĉwi,k−1
qi,ti,k−1

= cwik
qi,tik + eitik (21)

where ĉwi,k−1
is the most recent simulation of the earlier week’s transaction cost.

Working out equation (19), we get again that if both tik and ti,k+1 fall in the same
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week wik, the equation is

CSi,tik+1
− CSi,ti,k −

tik+1∑
s=ti,k+1

zi∆Ms = cwik
(qi,tik+1

− qi,ti,k) + eitik+1
(22)

If ti,k+1 happens to be in a later week, we write

CSi,tik+1
− CSi,ti,k −

tik+1∑
s=ti,k+1

zi∆Ms − ĉwi,k+1
qi,ti,k+1

= −cwik
qi,tik + eitik+1

(23)

where ĉwi,k+1
is the simulation of the subsequent week’s transaction cost from the pre-

vious iteration. Estimation of the posterior mean of cw is then done by stacking these

equations. Formally, we estimate y = Xcw + e with y = (ycont, yfut)′ and

ycontik = CSi,tik − CSi,ti,k−1
−

tik∑
s=ti,k−1+1

zi∆Ms + (1− Iwik=wi,k−1
)ĉwi,k−1

qi,ti,k−1
) (24)

yfutik = CSi,tik+1
− CSi,ti,k −

tik+1∑
s=ti,k+1

zi∆Ms − (1− Iwik=wi,k+1
)ĉwi,k+1

qi,ti,k+1
) (25)

and x = (xcont, xfut)′ with

xcont
ik = qi,tik − Iwik=wi,k−1

qi,ti,k−1
(26)

xfut
ik = −(qi,tik − Iwik=wi,k−1

qi,ti,k+1
) (27)

for all wik = w and is estimated using all data in that week. Notice that the error term

eit is a sum uitvt for t = ti,k−1 to t = ti,k and therefore heteroskedastic.

In the model, the transaction costs cw are identified up to their sign, see Has-

brouck (2009), and we therefore impose cw > 0. Hence, the posterior distribution of
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cw is a truncated normal

cw ∼ N+((X ′Σ−1
e X)−1X ′Σ−1

e y, (X ′Σ−1
e X)−1) (28)

with Σe a diagonal matrix with elements σ2
u

∑ti,k
s=ti,k−1+1 v

2
s .

Simulating ∆M

The most complex step is the simulation of the latent portfolio-level changes in credit

spreads ∆Mt. This step is absent in Hasbrouck’s model but necessary here as ∆m

consists of two components (simulating u is not necessary as it follows immediately from

the observed values of CS and the simulated values of q, c and ∆M). We draw ∆M from

a normal distribution with mean ∆̂M and variance V̂ , where ∆̂M is the OLS estimate

of a repeat sales regression

y = X∆M + e (29)

with the matrixes y and X have rows

yik = CSi,tik − CSi,ti,k−1
− ctikqi,tik + cti,k−1

qi,ti,k−1
(30)

and

xik = (0′..zikι
′..0′) (31)

for k = 1, .., K(i) and i = 1, .., N stacked, where K(i) denotes the total number of trans-

actions for bond i and N is the number of bonds allocated to the portfolio. ι is a vector

of ones with length tik−ti,k−1. The OLS estimator then is ∆̂M = (X ′X)−1X ′y with vari-

ance V̂ = (X ′X)−1X ′ΣeX(X ′X)−1. We neglect any serial correlation in credit spread

changes, and thus take the diagonal of V̂ to draw ∆M . This procedure occasionally has
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’gaps’ i.e. periods with no or too few transactions. In such case, adjoining periods are

clustered and the procedure estimates the cumulative return over the clustered periods.

C Model

In this appendix we derive a simple asset pricing model that helps to explain why

corporate bond liquidity risk is not priced, while equity market liquidity risk is priced.

The model has two assets, a liquid asset a (equity) with low transaction costs ca and an

illiquid asset b (corporate bond) with high costs cb. We assume two investment periods,

starting at time t = 0 and t = 1 and ending at t = 2. At t = 0 and t = 2 the investor

can trade both assets without costs and borrow at the risk-free rate, while at t = 1

trading involves costs ca and cb, respectively, and borrowing is not possible. Hence,

t = 1 represents a liquidity crisis state.

We first study the decision problem at time t = 1. Let Na and Nb be the positions

in assets a and b at time t = 0 (in terms of number of assets). The prices of the assets

are normalized to 1 a time 1. We assume that the investor faces a liquidity problem at

t = 1 and is forced to liquidate an amount D of his risky asset holdings. This can be

done by selling either asset a, asset b or both (it is assumed that the amount D to be

liquidated is in excess of any cash holdings). The numbers of shares sold are denoted

by ∆Na ≥ 0 and ∆Nb ≥ 0, where the value of the amounts sold, after transaction costs,

must add up to D, so that ∆Na(1− ca) + ∆Nb(1− cb) = D. The wealth at time t = 2

then is given by

W2 = (Na −∆Na)Ra + (Nb −∆Nb)Rb, (32)

where Ra and Rb are the gross returns on the assets in the second period. Substituting
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the restriction ∆Na(1− ca) + ∆Nb(1− cb) = D we can write this as

W2 = NaRa +NbRb +∆Na

(
1− ca
1− cb

Rb −Ra

)
− D

1− cb
Rb. (33)

We now linearize this equation around ca = 0, cb = 0, and Rb = 1 to obtain

W2 = NaRa +NbRb +∆Na (Rb −Ra + cb − ca)−DRb −Dcb. (34)

Applying a mean-variance optimization at time t = 1 with respect to ∆Na, taking ca

and cb as known, we find the optimal amount to be sold for asset a. If there is an interior

solution with ∆Na > 0 and ∆Nb > 0, the first order condition is

(µb−µa+cb−ca)−αV ar(Rb−Ra)∆Na−αCov(NaRa+(Nb−D)Rb, Rb−Ra) = 0, (35)

which gives the optimal amount ∆Na to be sold

∆Na =
µb − µa + cb − ca
αV ar(Rb −Ra)

+
Cov(NaRa + (Nb −D)Rb, Rb −Ra)

V ar(Rb −Ra)
. (36)

This amount is increasing in the difference in transaction costs between asset b and asset

a. However, if the cost difference becomes very large, at some point the optimal ∆Na

will exceed the gross amount to be liquidated D/(1− ca). In that case, a corner solution

∆Na = D/(1− ca) and ∆Nb = 0 will be optimal.

Now we turn to the optimization problem at time t = 0. Suppose it is known in

advance to the investor that in the case of a forced liquidation of assets, there will be

a corner solution with ∆Na = D/(1 − ca). Then we can find the t = 2 wealth as seen
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from t = 0 as (linearized around ca = 0 and Ra = 1)

W2 = ÑaR̃a + ÑbR̃b −D −Dca, (37)

where R̃a and R̃b denote the two-period returns, i.e. the return from time 0 to time 2,

and Ña and Ñb denote amount invested in the assets at time 0, i.e. Ña = NaPa with

Pa the price of asset a at t = 0. A simple mean-variance problem, without leverage

constraints, produces the optimal time 0 investments

Ñ = α−1Σ−1(µ− rf ) +DΣ−1Cov(R̃, ca), (38)

with Ñ = (Ña, Ñb)
′, R̃ = (R̃a, R̃b)

′ and µ = E(R̃) and Σ = V ar(R̃).

Now consider the equilibrium implications in a setting with several investors, which

may differ in terms of the size of the liquidity shock D. The equilibrium depends on

which traders are forced to liquidate assets and how many end up at the corner solution

∆Na = D. In order to provide intuition for the outcome, assume that all traders are at

this corner solution, where each investor has to liquidate an amount Di. In equilibrium,

then, with common α, µ and Σ we find

Ñ = α−1Σ−1(µ− rf ) + D̄Σ−1Cov(R̃, ca), (39)

where D̄ is the average of the individual amounts to be liquidated. The equilibrium risk

premia then are

µ− rf ι = αΣÑ − αD̄Cov(R̃, ca). (40)

The risk premia are the sum of a usual market risk premium, plus a liquidity premium

for the covariance between the asset returns and the transaction cost on the (more liquid)
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asset ca. We see that there is no risk premium for correlation with the transaction cost

of the less liquid asset, cb. Notice that µb may contain a liquidity risk premium for the

covariance between the illiquid asset return R̃b and the transaction costs on the liquid

asset ca, but there is no liquidity risk premium for the covariance between the illiquid

asset return R̃b and its own transaction cost cb.

D Liquidity beta sorts

In this appendix we provide details about the liquidity beta portfolio sorts. We esti-

mate the portfolio liquidity betas and their standard errors from a regression of bond

portfolio excess returns on market liquidity innovations for all double sorted portfolios

across quality (rating and EDF) and liquidity (age, issue size, trading volume) as well

as the AAA and CCC rated portfolio. We do this on a weekly basis using a one-year

rolling window. For each portfolio we then create quarterly betas and standard errors

by averaging the betas over all weeks in the quarter and calculating the appropriate

covariances. Next we average for each bond-quarter the betas and squared standard

errors18 across all portfolios in which that bond was contained.

For each bond, we also estimate the direct liquidity beta. To this end, we estimate

a beta and standard error from the univariate regression of the individual bond excess

returns on corporate bond market liquidity innovations. We again do this on a weekly

basis using the last trade available every week on a one-year rolling window, where

we require at least 25 observations and where the smallest and largest observation are

winsorized.

18This implicitly implies a correlation of one between beta estimates of different portfolios; betas are
typically highly correlated across liquidity sorts. If anything, this would put too little weight on the
portfolio betas.
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When constructing the portfolios for a given quarter, say Q2 2006, the one-year

rolling window used to estimate these betas includes this quarter, hence we use data

from Q3-Q4 2005 and Q1-Q2 2006 in this example. We thus essentially use a mixture

of the pre-ranking and post-ranking betas to form portfolios. This has the advantage

that it generates more variation in the liquidity betas used to estimate the asset pricing

model. The disadvantage is that these portfolios are not ex-ante tradable portfolios, but

this is not an issue for estimating and testing asset pricing models.19

Having obtained the portfolio beta and the direct beta we can now use the standard

Bayesian formula to calculate our posterior beta

βpost
liq =

var(β̂port
liq )−1β̂port

liq + var(β̂direct
liq )−1β̂direct

liq

var(β̂port
liq )−1 + var(β̂direct

liq )−1
. (41)

Portfolio double sorts are then conducted again as before using a sequential sort, first

on credit quality (rating or EDF) and then on liquidity beta.

19When we use pre-ranking betas, we find very similar results (not reported).
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Table 1: Summary statistics on returns, factors, costs, and betas
Panel A presents time-series correlations of the four factors: corporate bond liquidity shocks (CBLIQ),

equity market liquidity shocks (EQLIQ), equity returns (EQ), and shocks to the VIX (VIX). The

sample period is 2005 to 2008 with weekly observations, and we use overlapping four-weekly changes

for the factors. Panel B presents statistics for the return and liquidity data, across 62 double-sorted

portfolios sorted first on rating or EDF and then on the basis of trading activity, average bond age

or issue size. The first three columns present averages across all portfolios. The second and third

column present average t-stats and average R2 of the first step regressions. The final two columns

show average values for low liquidity and the high liquidity portfolios. Annualized expected returns (in

excess of government bond returns) are denoted by E(r) and average transaction costs by E(c), both in

percentages. Expected costs are calculated for each portfolio as the average transaction costs over the

full sample, estimated using Roll’s approach. The betas capture exposure of corporate bond returns to

the CBLIQ, EQLIQ, EQ and VIX factors. All factors are scaled to have the same standard deviation as

the equity market return. Panel C provides cross-sectional correlations of the multivariate factor betas

and expected liquidity E(c) across all portfolios.

Panel A: Time-series correlations of factors
CBLIQ EQLIQ EQ VIX

CBLIQ 100% 36.3% -34.6% 36.2%
EQLIQ 100% -70.2% 71.3%
EQ 100% -91.6%
VIX 100%

Panel B: Expected returns, costs, and betas

rating average t-stat R2 low liq high liq
E(r)(%) 1.868 [4.80] 1.938 1.778
E(c)(%) 0.833 [6.15] 0.933 0.712
univariate
βCBLIQ -0.264 [-8.63] 26.8% -0.240 -0.248
βEQLIQ -0.435 [-13.95] 47.2% -0.406 -0.463
βEQ 0.380 [14.62] 49.8% 0.358 0.399
βV IX -0.360 [-15.43] 52.4% -0.338 -0.382
multivariate
βCBLIQ -0.101 [-4.04] -0.087 -0.111
βEQLIQ -0.158 [-3.65] -0.140 -0.175
βEQ 0.076 [1.10] 0.088 0.052
βV IX -0.163 [-3.48] 64.9% -0.147 -0.191

Panel C: Cross-sectional correlations of betas and expected liquidity

E(c) βCBLIQ βEQLIQ βEQ βV IX

E(c) 100% -36.9% 4.7% 46.4% 26.7%
βCBLIQ -36.9% 100% -58.5% -11.3% -24.5%
βEQLIQ 4.7% -58.5% 100% -33.4% 6.3%
βEQ 46.4% -11.3% -33.4% 100% 66.6%
βV IX 26.7% -24.5% 6.3% 66.6% 100%
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Table 3: Equity turnover regressions
The table contains estimates of a linear regression of monthly changes in the value-weighted mean of

log turnover across stocks on the value-weighted equity market excess return and changes in the value-

weighted ILLIQ across stocks, corrected for inflation. Data runs from Jan 2005 to Dec 2008. t-statistics

are in brackets.

model (1) (2) (3)
∆ Equity market illiquidity 0.140 -0.004

[1.93] [-0.03]

Equity market return -1.725 -1.755
[-2.51] [-1.53]

Constant 0.001 0.001 0.001
[0.32] [0.33] [0.34]

N 47 47 47

R2 7.6% 12.3% 12.3%
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Table 4: Corporate bond turnover regressions
The table contains estimates of a linear panel regression of quarterly changes in individual bond log

turnover on changes of the Roll-based market-wide transaction cost measure for the corporate bond

market and changes in the market-wide credit spreads (average credit spread across firms). We also

include interactions between a high quality dummy (equal to one for bonds rated AAA or AA) and the

change in cost index or market-wide credit spread, respectively. Bond-specific fixed effects are included

and standard errors are clustered by quarter. The sample runs from 2005Q1 to 2008Q4 and contains

data on the same sample of bonds as is used in the previous tables. Bond turnover is winsorized at 5%

top and 5% bottom. t-statistics are in brackets.

model (1) (2) (3) (4) (5)

∆ Corporate bond -0.149 -0.118 -0.144 -0.119
market illiquidity [-7.29] [-7.62] [-6.63] [-7.88]

∆ Credit spread -7.844 -3.440 -3.526 -5.327
[-2.45] [-2.31] [-2.36] [-2.67]

∆ Corporate bond 0.0841
market illiquidity [2.71]
* HQ dummy

∆ Credit spread 5.965
* HQ dummy [2.46]

HQ dummy (AAA/AA) 0.0173 0.00632
[0.31] [0.11]

Constant -0.0371 -0.0279 -0.0275 -0.0326 -0.0295
[-1.93] [-1.45] [-1.42] [-1.32] [-1.20]

N 113776 113776 113776 113776 113776
R2 4.9% 4.8% 5.0% 5.0% 5.0%
# clusters 15 15 15 15 15
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Table 6: Market and liquidity betas across corporate bond portfolios
The table presents average betas (across all portfolios) of the Bongaerts, de Jong and Driessen (2011)

model in equation (14). We have βeq = βr,eq − ζ0β
c,eq and βvix = βr,vix − ζ0β

c,vix, with ζ0 = 1.2,

βother = −βrc − βcr + βcc and βnet = βrr + βother. The other betas are defined in equations (11) and

(12).

βr,eq 0.158
βr,vix -0.165
βc,eq -0.013
βc,vix 0.018
βeq 0.174
βvix -0.187
βrr 0.760
βrc -0.098
βcr -0.127
βcc 0.044
βother 0.268
βnet 1.029
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Table 7: BDD model: Cross-sectional regression estimates
This table present estimates of the Bongaerts, de Jong and Driessen (2011) model in equation (14).

The sample runs from 2005 to 2008. t-statistics are given in square brackets.

model (1) (2) (3) (4) (5) (6) (7)
βeq 3.902 3.844 3.844 2.969 2.354 3.286 3.955

[6.95] [7.03] [7.03] [3.78] [3.17] [3.95] [5.94]

βvix -2.149 -2.154 -2.195 -1.500 -1.718 -1.943 -2.220
[-3.18] [-2.51] [-3.08] [-1.69] [-1.93] [-2.13] [-2.67]

E(c) 0.932 0.933 1.043 1.067 1.112 1.156 0.961
[4.36] [3.62] [3.95] [4.12] [4.85] [4.90] [3.58]

βrr -0.004 0.598 0.569 0.427
[-0.02] [3.12] [2.59] [1.84]

βrc 0.906 2.927 0.471
[1.55] [5.27] [0.92]

βcr -5.169
[-3.37]

βcc -19.02
[-4.92]

βother -1.380
[-4.07]

βnet -0.044
[-0.38]

R2 72.8% 72.8% 73.3% 74.5% 77.7% 73.9% 72.8%
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Figure 1: Time series of corporate bond transaction costs: Roll measure and
imputed roundtrip costs
The figure shows weekly time series of the transaction costs obtained by using the Gibbs
sampler to estimate the Roll model (solid line), averaged across all portfolios, and the
imputed roundtrip cost measure of Feldhütter (2011) and Dick-Nielsen, Feldhütter, and
Lando (2011), averaged across all bonds (dashed line). The sample period is 2005 to
2008.
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Figure 2: Fit of expected returns across portfolios
The figure shows the fitted values of the expected bond returns, obtained by multiplying
the estimated coefficients in Table 2, specification (11) with the estimated expected cost
and the estimated betas. The equity risk premium and volatility risk premium are
presented together. Alpha is the pricing error as defined in equation (2). The fit is
presented for portfolios across rating categories / EDFs and liquidity proxies, averaged
across the three liquidity proxy sorts (amount issued, age, and activity). For example,
“AA-hi” refers to the high-liquidity AA portfolios, while “AA-lo” refers to the low-
liquidity AA portfolios.
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Figure 3: Turnover in equity and corporate bond markets
The figure shows quarterly turnover in the equity and corporate bond market. For the
equity market, the time series of both the value-weighted mean and median of quarterly
turnover across all CRSP stocks is shown. Similarly, for corporate bonds the time series
of the value-weighted mean and median of quarterly bond turnover across all TRACE
bonds is shown.
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